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Suppose the surfaces of the segment ABB’ and of the
hemisphere DEE’ to be equal.
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Since the surfaces are equal, AB = DE. [L. 42, 43]
Now, in Fig. 1, AB*>2AM*® and <2407,
and, in Fig. 2, AB*<2AM* and >240
Hence, if R be taken on AA’ such that
AR*=1AB?
R will fall between O and M.
Also, since AB*=DE*, AR=CD.

Produce 04’ to K so that OA’ = A’K, and produce A’4 to
H so that

AK:A'M=HA: AM,
or, componendo, A'K+A'M:A'M=HM: MA............ (1).
Thus the cone HBB’ is equal to the segment A BB’
[Prop. 2]

Again, produce CD to F so that CD= DF, and the cone
FEE' will be equal to the hemisphere DEE’. [Prop. 2]

Now AR.RA'>AM.MA’,
and AR*=}AB*=3AM.AA'=AM.A'K.
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Hence
AR.RA’+ RA*> AM . MA’+ AM. A'K,
or AA’ AR > AM.MK
> HM . A'M, by (1).
Therefore AA’: A’M > HM: AR,

or AB*: BM*> HM : AR,
e AR?: BM*>HM : 24R, since AB2=2AR,
>HM: CF.

Thus, since AR = CD, or CE,
(circle on diam. EE’) : (circle on diam. BB)> HM : CF.
It follows that

(the cone FEE') > (the cone HBB’),

and therefore the hemisphere DEE’ is greater in volume than
the segment ABB'.



MEASUREMENT OF A CIRCLE.

Proposition 1.

The area of any circle is equal to a right-angled triangle in
which one of the sides about the right angle is equal to the radwus,
and the other to the circumference, of the circle.

Let ABCD be the given circle, K the triangle described.
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Then, if the circle is not equal to K, it must be either
greater or less.

L. If possible, let the circle be greater than K.

Inscribe a square 4 BCD, bisect the arcs AB, BC, CD, DA,
then bisect (if necessary) the halves, and so on, until the sides
of the inscribed polygon whose angular points are the points of

division subtend segments whose sum is less than the excess of
the area of the circle over K.
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Thus the area of the polygon is greater than K.

Let A be any side of it, and ON the perpendicular on A&
from the centre O.

Then ON 1s less than the radius of the circle and therefore
less than one of the sides about the right angle in K. Also the
perimeter of the polygon is less than the circumference of the
circle, i.e. less than the other side about the right angle in K.

Therefore the area of the polygon is less than K'; which is
inconsistent with the hypothesis.

Thus the area of the circle is not greater than K.

II. If possible, let the circle be less than K.

Circumscribe a square, and let two adjacent sides, touching
the circle in %, H, meet in 7. Bisect the arcs between adjacent
points of contact and draw the tangents at the points of
bisection. Let A be the middle point of the arc ZH, and FAF
the tangenti at 4.

Then the angle TAG is a right angle.

Therefore 7G> G4

> GH.

It follows that the triangle FT'G is greater than half the area
TEAH.

Similarly, if the arc AH be bisected and the tangent at the
point of bisection be drawn, it will cut off from the area GAH
more than one-half.

Thus, by continuing the process, we shall ultimately arrive
at a circumscribed polygon such that the spaces intercepted
between it and the circle are together less than the excess of
K over the area of the circle.

Thus the area of the polygon will be less than K.

Now, since the perpendicular from O on any side of the
polygon is equal to the radius of the circle, while the perimeter
of the polygon is greater than the circumference of the circle,
it follows that the area of the polygon is greater than the
triangle K; which is impossible.
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Therefore the area of the circle is not less than X,

Since then the area of the circle is neither greater nor less
than K, it is equal to it.

Proposition 2.

The area of a circle ws to the square on its dvameter as 11
to 14.

[The text of this proposition is not satisfactory, and Archi-
medes cannot have placed it before Proposition 3, as the
approximation depends upon the result of that proposition,]

Proposition 3.

The ratio of the circumference of any circle to its diameter
18 less than 3} but greater than 3}9.

[In view of the interesting questions arising out of the
arithmetical content of this proposition of Archimedes, it is
necessary, in reproducing it, to distinguish carefully the actual
steps set out in the text as we have it from the intermediate
steps (mostly supplied by Eutocius) which it is convenient to
put in for the purpose of making the proof easier to follow.
Accordingly all the steps not actually appearing in the text
have been enclosed in square brackets, in order that it may be
clearly seen how far Archimedes omits actual calculations and
only gives results. It will be observed that he gives two
fractional approximations to /3 (one being less and the other
greater than the real value) without any explanation as to how
he arrived at them; and in like manner approximations to the
square roots of several large numbers which are not complete
squares are merely stated. These various approximations and
the machinery of Greek arithmetic in general will be found
discussed in the Introduction, Chapter IV.]

I. Let AB be the diameter of any circle, O its centre, AC
the tangent at A ; and let the angle A0C be one-third of a
right angle.
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Then OA : AC[=4/3:1]>265:153............. (1),
and 0C:0A4[=2:1]=306:153............... (2).

First, draw OD bisecting the angle AOC and meeting AC
in D.
Now CO:04=CD: DA, [Eucl. VI. 3]
so that [CO+ 04 :04=CA: DA, or]
CO+04 :CA=04:A4D.
Therefore [by (1) and (2)]
OA : AD>571:153 ..covvvennnnnnnnn (3).
Hence 0D?*: AD*[=(04°+ AD?*) : AD?
>(571% +153%) : 1537
> 349450 : 23409,
so that OD : DA >5914: 158 covveviierinnnnnnnn, (4).

IP>om m

Secondly, let OF bisect the angle AOD, meeting AD in E.
[Then DO :04=DE: EA,
sothat DO+0A4A:DA=04:AE]
Therefore 04 : AE[> (59144 571) : 158, by (3) and (4)]
> 11624 : 153.eueeerieinenenn. (5).
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[It follows that
OE*®:EA*> {(11624)* +153%} : 153
> (135053443 + 23409) : 23409
> 137394333 : 23409.]
Thus OF : EA>11721 :153...ccccvvnivnvnnenns (6).

Thirdly, let OF bisect the angle AOE and meet AE in F.

We thus obtain the result [corresponding to (3) and (5)
above] that
04 : AF[> (11621 +1172}) : 153]

> 93843 1 158.uceuiireerennnns (7).
[Therefore OF?:FA®>{(2334})"+153% : 153

> 54721324 : 23409.]
Thus OF : FA >2839} : 158..cvvenininiininninns (8).

Fourthly, let OG bisect the angle AOF, meeting AF in G.
We have then '
OA : AG[> (23341 +2339}) : 153, by means of (7) and (8)]
> 46734 : 153.
Now the angle 40C, which is one-third of a right angle,

has been bisected four times, and it follows that
£ AOG = 7 (a right angle).
Make the angle AOH on the other side of 04 equal to the
angle A0G, and let GA produced meet OH in H.
Then £ GOH =4 (a right angle).

Thus GH is one side of a regular polygon of 96 sides cir-
cumscribed to the given circle.

And, since 04 : AG >4673% : 153,
while AB=204, GH=2AQ4,
it follows that
AB : (perimeter of polygon of 96 sides)[> 46734 : 153 x 96]
> 4673% : 14688.
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}é_6§_8_ =38 + 99.7:% .
4673% 4673%
667
[:< 3+ 16“7"2%}]
< 34
Therefore the circumference of the circle (being less than
the perimeter of the polygon) is a fortiors less than 8} times

the diameter AB.

II. Next let AB be the diameter of a circle, and let AC,
meeting the circle in C, make the angle CAB equal to one-third
of a right angle. Join BC.

Then AC : CB[=4/3:1]<1351 : 780.

First, let AD bisect the angle BAC and meet BC in d and
the circle in D. Join BD.

Then LBAD=rd4C
| = £dBD,
and the angles at D, C are both right angles.
It follows that the triangles ADB, [ACd], BDd are similar.

But

o

Therefore AD:DB=BD: Dd
[=40: Cd]
=AB: Bd ~ [Eucl. VL. 8]
=AB+ AC : Bd+(Cd
=AB+ AC : BC
or  BA+AC:BC=A4D: DB.
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[But AC : CB< 1351 : 780, from above,

while BA :BC=2:1
=1560 : 780.]
Therefore AD:DB<2911:780....cccccunnen... (1).
[Hence AB*: BD* < (2911*4+780%) : 780*
< 9082321 : 608400.]
Thus AB: BD<3013% :780............... (2).

Secondly, let AK bisect the angle BAD, meeting the circle
in £'; and let BE be joined.

Then we prove, in the same way as before, that
AE : EB[=BA+AD: BD
< (30132 +2911) : 780, by (1) and (2)]
< 5924% : 780
< 59243 x £ : 780 x £5
<1823 :240.....ccviiininiiiiniinnns (3).
[Hence  AB?: BE® < (1823% + 240%) : 240?
< 3380929 : 57600.]

Therefore AB: BE <1838% : 240...................(4).
Thirdly, let AF bisect the angle BAE, meeting the circle
in F.

Thus AF :FB[=BA + AE : BE

< 36615 : 240, by (3) and (4)]
< 36618 x 14 :240 x 1
<1007 :66..c....ccvvviiininnnnnnn (5).
[It follows that
AB*: BF* < (1007% + 66°) : 66*
< 1018405 : 4356.]
Therefore AB : BF <1009 : 66..c.ccvnvnnnnnnnn (6).

Fourthly, let the angle BAF be bisected by AG meeting the
circle in G.

Then AG :GB[=BA + AF : BF]
< 2016% : 66, by (5) and (6).
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[And AB : BG* < {(2016})* + 66 : 66°
< 40692844 : 4356.]
Therefore AB : BG < 20174 : 66,
whence BG:AB>66 :2017T%..cccccovvnvninennen. (7).

[Now the angle BAG which is the result of the fourth bisection
of the angle BAC, or of one-third of a right angle, is equal to
one-fortyeighth of a right angle.

Thus the angle subtended by BG at the centre is
o (a right angle).]

Therefore B@G is a side of a regular inscribed polygon of 96
sides.

It follows from (7) that
(perimeter of polygon) : AB [> 96 x 66 : 20171]
> 6336 : 20173

And ST > 31
Much more then is the circumference of the circle greater than
349 times the diameter.

Thus the ratio of the circumference to the diameter

< 3% but > 339,



ON CONOIDS AND SPHEROIDS.

Introduction¥*.

“ ARCHIMEDES to Dositheus greeting.

In this book I have set forth and send you the proofs of the
remaining theorems not included in what I sent you before, and
also of some others discovered later which, though I had often
tried to investigate them previously, I had failed to arrive at
because I found their discovery attended with some difficulty.
And this is why even the propositions themselves were not
published with the rest. But afterwards, when I had studied
them with greater care, I discovered what I had failed in
before.

Now the remainder of the earlier theorems were propositions
concerning the right-angled conoid [paraboloid of revolution];
but the discoveries which I have now added relate to an obtuse-
angled conoid [hyperboloid of revolution] and to spheroidal
figures, some of which I call oblong (mrapauarea) and others flat
(émimhaTéa).

I. Concerning the right-angled conoid it was laid down
that, if a section of a right-angled cone [a parabola] be made to
revolve about the diameter [axis] which remains fixed and

* The whole of this introductery matter, including the definitions, is trans-
lated literally from the Greek text in order that the terminology of Archimedes
may be faithfully represented. When this has once been set out, nothing will
be lost by returning to modern phraseology and notation. These will accordingly
be employed, as usual, when we come to the actual propositions of the treatise.

7—2
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return to the position from which it started, the figure compre-
hended by the section of the right-angled cone is called a right-
angled conoid, and the diameter which has remained fixed
is called its axis, while its vertex is the point in which the
axis meets (dmrrerar) the surface of the conoid. And if a plane
touch the right-angled conoid, and another plane drawn parallel
to the tangent plane cut off a segment of the conoid, the base
of the segment cut off is defined as the portion intercepted by
the section of the conoid on the cutting plane, the vertex
[of the segment] as the point in which the first plane touches
the conoid, and the axis [of the segment] as the portion cut
off within the segment from the line drawn through the vertex
of the segment parallel to the axis of the conoid.

The questions propounded for consideration were

(1) why, if a segment of the right-angled conoid be cut off
by a plane at right angles to the axis, will the segment so cut
off be half as large again as the cone which has the same base
as the segment and the same axis, and

(2) why, if two segments be cut off from the right-angled
conoid by planes drawn in any manner, will the segments so cut
off have to one another the duplicate ratio of their axes.

II. Respecting the obtuse-angled conoid we lay down the
following premisses. If there be in a plane a section of an
obtuse-angled cone [a hyperbola], its diameter [axis], and the
nearest lines to the section of the obtuse-angled cone [7.e. the
asymptotes of the hyperbola], and if, the diameter [axis]
remaining fixed, the plane containing the aforesaid lines be
made to revolve about it and return to the position from which
it started, the nearest lines to the section of the obtuse-angled
cone [the asymptotes] will clearly comprehend an isosceles cone
whose vertex will be the point of concourse of the nearest lines
and whose axis will be the diameter [axis] which has remained
fixed. The figure comprehended by the section of the obtuse-
angled cone is called an obtuse-angled conoid [hyperboloid of
revolution], its axis is the diameter which has remained fixed,
and its vertex the point in which the axis meets the surface
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of the conoid. The cone comprehended by the nearest lines to
the section of the obtuse-angled cone is called [the cone]
enveloping the conoid (mepiéywr 70 rwvoedés), and the
straight line between the vertex of the conoid and the vertex
of the cone enveloping the conoid is called [the line] adjacent
to the axis (moreoloa 7¢ dfovi). And if a plane touch the
obtuse-angled conoid, and another plane drawn parallel to the
tangent plane cut off a segment of the conoid, the base of
the segment so cut off is defined as the portion intercepted by
the section of the conoid on the cutting plane, the vertex [of
the segment] as the point of contact of the plane which touches
the conoid, the axis [of the segment] as the portion cut off
within the segment from the line drawn through the vertex of
the segment and the vertex of the cone enveloping the conoid;
and the straight line between the said vertices is called
adjacent to the axis.

Right-angled conoids are all similar; but of obtuse-angled
conoids let those be called similar in which the cones enveloping
the conoids are similar.

The following questions are propounded for consideration,

(1) why, if a segment be cut off from the obtuse-angled
conoid by a plane at right angles to the axis, the segment so
cut off has to the cone which has the same base as the segment
and the same axis the ratio which the line equal to the sum
of the axis of the segment and three times the line adjacent
to the axis bears to the line equal to the sum of the axis of
the segment and twice the line adjacent to the axis, and

(2) why, if a segment of the obtuse-angled conoid be cut
off by a plane not at right angles to the axis, the segment so
cut off will bear to the figure which has the same base as
the segment and the same axis, being a segment of a cone*
(amérpapa rovov), the ratio which the line equal to the sum
of the axis of the segment and three times the line adjacent
to the axis bears to the line equal to the sum of the axis of the
segment and twice the line adjacent to the axis.

* A segment of a cone is defined later (p. 104).
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III. Concerning spheroidal figures we lay down the follow-
ing premisses. If a section of an acute-angled cone [ellipse] be
made to revolve about the greater diameter [major axis] which
remains fixed and return to the position from which it started,
the figure comprehended by the section of the acute-angled
cone is called an oblong spheroid (mapaudrxes apaipoetdés).
But if the section of the acute-angled cone revolve about the
lesser diameter [minor axis] which remains fixed and return
to the position from which 1t started, the figure comprehended
by the section of the acute-angled cone is called a flat spheroid
(émemhatd oaipoedés). In either of the spheroids the axis
is defined as the diameter [axis] which has remained fixed, the
vertex as the point in which the axis meets the surface of the
spheroid, the centre as the middle point of the axis, and the
diameter as the line drawn through the centre at right angles
to the axis. And, if parallel planes touch, without cutting,
either of the spheroidal figures, and if another plane be drawn
parallel to the tangent planes and cutting the spheroid, the
base of the resulting segments is defined as the portion inter-
cepted by the section of the spheroid on the cutting plane, their
vertices as the points in which the parallel planes touch the
spheroid, and their axes as the portions cut off within the
segments from the straight line joining their vertices. And
that the planes touching the spheroid meet its surface at one
point only, and that the straight line joining the points of
contact passes through the centre of the spheroid, we shall
prove. Those spheroidal figures are called similar in which
the axes have the same ratio to the ‘diameters” And let
segments of spheroidal figures and conoids be called similar if
they are cut off from similar figures and have their bases
similar, while their axes, being either at right angles to the
planes of the bases or making equal angles with the corre-
sponding diameters [axes] of the bases, have the same ratio
to one another as the corresponding diameters [axes] of the
bases.

The following questions about spheroids are propounded for
consideration,

(1) why, if one of the spheroidal figures be cut by a plane
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through the centre at right angles to the axis, each of the
resulting segments will be double of the cone having the same
base as the segment and the same axis; while, if the plane of
section be at right angles to the axis without passing through
the centre, (o) the greater of the resulting segments will bear
to the cone which has the same base as the segment and the
same axis the ratio which the line equal to the sum of half the
straight line which is the axis of the spheroid and the axis of
the lesser segment bears to the axis of the lesser segment, and
(b) the lesser segment bears to the cone which has the same
base as the segment and the same axis the ratio which the line
equal to the sum of half the straight line which is the axis
of the spheroid and the axis of the greater segment bears to the
axis of the greater segment;

(2) why, if one of the spheroids be cut by a plane passing
through the centre but not at right angles to the axis, each of
the resulting segments will be double of the figure having the
same base as the segment and the same axis and consisting of a
segment of a cone*.

(3) But, if the plane cutting the spheroid be neither
through the centre nor at right angles to the axis, (a) the
greater of the resulting segments will have to the figure
which has the same base as the segment and the same axis
the ratio which the line equal to the sum of half the line
joining the vertices of the segments and the axis of the lesser
segment bears to the axis of the lesser segment, and (b) the
lesser segment will have to the figure with the same base
as the segment and the same axis the ratio which the line
equal to the sum of half the line joining the vertices of the
segments and the axis of the greater segment bears to the axis
of the greater segment. And the figure referred to is in these
cases also a segment of a cone*.

When the aforesaid theorems are proved, there are dis-
covered by means of them many theorems and problems.

Such, for example, are the theorems

(1) that similar spheroids and similar segments both of

* See the definition of a segment of a cone (dréruana xwrov) on p. 104.
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spheroidal figures and conoids have to one another the triplicate
ratio of their axes, and

(2) that in equal spheroidal figures the squares on the
‘diameters’ are reciprocally proportional to the axes, and, if in
spheroidal figures the squares on the ‘ diameters’ are reciprocally
proportional to the axes, the spheroids are equal.

Such also is the problem, From a given spheroidal figure
or conoid to cut off a segment by a plane drawn parallel to a
given plane so that the segment cut off is equal to a given cone
or cylinder or to a given sphere.

After prefixing therefore the theorems and directions (ém¢-
Tdypata) which are necessary for the proof of them, I will
then proceed to expound the propositions themselves to you.
Farewell.

DEFINITIONS.

If a cone be cut by a plane meeting all the sides [generators]
of the cone, the section will be either a circle or a section of an
acute-angled cone [an ellipse]. If then the section be a circle,
1t is clear that the segment cut off from the cone towards the
same parts as the vertex of the cone will be a cone. But, if
the section be a section of an acute-angled cone [an ellipse], let
the figure cut off from the cone towards the same parts as the
vertex of the cone be called a segment of a cone. Let the
base of the segment be defined as the plane comprehended by
the section of the acute-angled cone, its vertex as the point
which is also the vertex of the cone, and its axis as the straight
line joining the vertex of the cone to the centre of the section
of the acute-angled cone.

And if a cylinder be cut by two parallel planes meeting all
the sides [generators] of the cylinder, the sections will be either
circles or sections of acute-angled cones [ellipses] equal and
similar to one another. If then the sections be circles, it is
clear that the figure cut off from the cylinder between the
parallel planes will be a cylinder. But, if the sections be
sections of acute-angled cones [ellipses), let the figure cut off
from the cylinder between the parallel planes be called a
frustum (rouos) of a cylinder. And let the bases of the
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frustum be defined as the planes comprehended by the sections
of the acute-angled cones [ellipses], and the axis as the straight
line joining the centres of the sections of the acute-angled
cones, so that the axis will be in the same straight line with
the axis of the cylinder.”

Lemma.

If wn an ascending arithmetical progression consisting of the
magnitudes A,, 4,, ... 4, the common difference be equal to the
least term A,, then

n.d,<2(d4,+4,+...+4,),
and >2(A4,+ 4.+ ...+ 4,)

[The proof of this is given incidentally in the treatise On
Spirals, Prop. 11. By placing lines side by side to represent
the terms of the progression and then producing each so as to
make it equal to the greatest term, Archimedes gives the
-equivalent of the following proof.

If Sp=4,+A4;+ ...+ 4, + 4,,
we havealso S,=A4,+A4,.+4n.+...+4,.
And A+ A, =4, + 4, ,=...=4,.

Therefore 28, =(n+1)4,,
whence n.4, <28,
and n. A4, > 28,,.

Thus, if the progression is a, 24, ... na,

g =" (n2+ 1) o,
and n’a < 28,,
but >28,:.]

Proposition 1.

If A\, B, 0\, ...K, and A4,, B,, C,,...K, be two series of
magnatudes such that

4,:B,=4,: B, ()
B :C,=B,:0,,and soon | T ;
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and if A, B;, Cs, ...K; and A,, B,, C,, ... K, be two other series
such that

A :A;,=4,: 4,

B, :B; =B, :B,, and so on}

then (A, +B,+C+...+K):(4;+ B;+ C;+... + Ky)
=4+ B:;+Cy+...+Ky): (4, + B, + ... + K,).

The proof is as follows.

Since A,: A, =A,: 4,,

and A,:B, =A4,:B,,

while B,:B;,=B8B,:B,,

we ha.we', ex aequali, A;:B;=4,:B,. } ...... ).
Similarly B,:C; =B, :(C,, and s0 on

Again, it follows from equations (a) that
4,:4,=B,:B,=0(,:0,=....
Therefore
A4,:4,=(A4,+ B +C+...+ K)): (4, + B, + ... + K)),
or (A, 4+ B,+C+...+ K)): A, =(4,+ B, + 0, + ... + K,) : 4,;
and A4,:A;,=4,:4,,
while from equations () it follows in like manner that
A;:(A3+ B+ Cs+ ...+ K)=4,: (A, + B, +C, + ... + K.
By the last three equations, ex aequali,
(4,+B,+C+... +K)): (A;+ B; + C;+ ... + K))
=(4,4B,+ Co+ ...+ Ky)): (4, + B, +C, + ... + K,).
Cor. If any terms in the third and fourth series corre-
sponding to terms in the first and second be left out, the

result is the same. For example, if the last terms K;, K, are
absent,

(4, +B,+ 0+ ...+ K) : (434 Bs + Cs + ... + 1))
=(A,+B,+Co+ ... + Ky): (4, + B,+C,+... + 1),

where 7 immediately precedes K in each series.
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Lemma to Proposition 2.

[On Spirals, Prop. 10.]

If A, A,, A,, .. A, be n lines forming an ascending
arithmetical progression in which the common difference ts equal
to the least term A,, then

(m+1D)Az2+A4,(4,+4,+4;+...+4,)
=3(42+A42+ 43 +... + 4,).

A

A1 A, Apn_gAn oA,

......

-

An AnyAn.g Ag A: A

Let the lines 4,, A,, 44, ...4, be placed in a row
from left to right. Produce 4,,, 4, ., ...4, until they are

each equal to 4,, so that the parts produced are respectively
equal to 4,, 4,, ...4,_,.

Taking each line successively, we have
24,'=24,"
(A +4,)=4"+4% ,+24,. 4, ,,
Ao+ Ayo)=d"+ 4% . +24,. 4, ,,

------------------------------------------------

(An-l + Al)2 = A2n—~1 + A1s + 2An--1 . A1~
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And, by addition,
(n+ DA, =24 +42+...+ 43
+24, A, +24,. 4, ;+...+24,,.4,.

Therefore, in order to obtain the required result, we have to
prove that

24, 4+ A, Ay o+ ...+ A4, 1 A+ A (A, + A, +4,+...+4,)
=A2+ 47+ ...+ 47 e (a).
Now 24,.4, .,=A4,.44,_,, because 4,= 24,,
24,. 4, ,=A4,.64,_,, because 4;=34,,

---------------------------

24,,.4,=4,.2(n—-1)A,.
It follows that
2(4, Ay +A4,. 4, o +...+A4,  A)+ A (A + A, +...+4,)
=A4,{4,+34, ,+54, +...+(2n—-1)A4,}.
And this last expression can be proved to be equal to
AP+ A0+ ..+ 42
For 4,’=4,(n.4,)
=4,{4,+(n—-1)4,}
=A,{Ap+2(Ap+ Adps+ ... + 4,)},
because (n—1) 4, =4, .+ 4,
+4, .+ 4,

+ 'Al + An—l- .
Similarly 4%, ;= A4,{4, 1 +2(dno+ A+ ... + 4))},

---------------------------

Al=A,(A,+24,),
A= A4,.4,;
whence, by addition,
AP+ A7+ A2+ ...+ 4,7
=A4,{4,+84, 3 +54, 5+ ... +(2n~1)4,}.



