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where « is a positive small quantity of the first order. When n =0,
l+m—oc—(l+m—-1)(2—-0)=€e(2—-1—-m),

so that as [+m>2, we have

l+m—o

lvm—1-27°7""

where o' is a positive small quantity of the first order, unless {4+ m =2, and then ¢ =0.

Hence
P’ 1 1
}7)=H1-—fyn2—o'—ry’
1
>H2—a
1
>

(2 — o.)3l+2m+n 4

the difference between the two sides being a small quantity of the first order. Also

Q8
P/

is a small quantity of the second order, that is, a quantity of an order less than the

foregoing difference; consequently

P’ S 1
P + QB (2 — o.)3l+2m+n .

The changes depreciated the numerator of I’ into that of 1”: hence
7 P+QB

T< P
< (2 —_ o.>3l+2m+n

< (2 - 0.)3l+3m+3n'
This result holds for every term in Ay, ; hence

’
b imn
hlmn |

< (2 — o.)al+3m+3n.

Similarly,

\ K 1 | 3l+3m-+3n
[klmn‘<(2—0') .

Let the region of convergence of the power-series
Ezzhlmntlem(ﬁn, zzzklmntleﬂbﬁbn
be defined by the ranges

t 2r, |0]2r, |¢|<m;
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and let M,, M, be the maximum values of the moduli of the series respectively within
this region; then

M,
hgmn < WL >
M,
klmn < ;Z"'lm ’/'2” )
consequently

, M,

k mn < s G T m Ty n

{(2 —o) %(2 - 0)3} 2-oy

k/lmn < M2

e =

DIDID PN LT LD DY TPl

Hence the series

converge absolutely for values of ¢ such that |[¢|<r.

The existence of integrals of

t% = + at + ST aga'yit? 1

t% =y + bt + X Zby,atyitr

can be deduced from the preceding result, by choosing
laf=4, [b[=B, |ay|=Adi, |by|=2Biy,

as the quantities 4, B, A, By, for those dominant equations. The expression for the
integrals is

X = EEZHlmn tlem(,bn}
y= 222]{lmn t19m¢,n ,

where Hy,, is derived from 7¥,,, and Ky, from Ky,, by changing 4 into —a,
B mto - b, Aj, into ag,, and By, into by,. The effect of these changes is to give

‘Hlmnl < h/lmn,
|Klmn| < kllmn;
and therefore the series for # and y converge absolutely.

The actual values are
z=at log t+ Ct+333 Hypn tlgm‘i’“}
Y= bt log t+ 02t + 222 Klmn tl0m¢7l '

where O=—tlogt, ¢=%t(log?)?, the summation is for values of I, m, n such that
l+m+n>2, and the coefficients C,, C, are arbitrary constants.
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But the formal expression is more general than the actual value. The equations
determining the coefficients are

(l+m+ n— I)Hlmn_(m“'i' 1)Hl—l, m+1,n_(n+l) Hl,m—l,n+1=Elmn}
(l+’m/+n— l)Klmn_(m+ 1)Kl—l,m+l,n'— (n+ 1)}zl,m—l, n+l = Flmn ’

with .
H,w=0,, Hyp=—a, Hy=0,

K100=02: Kmo:"b; K001=0~

It is clear that, when l4+m+n=2,
Epn=0, Fry=0, if n=1, 2;

hence Hyppn, Kiymn both vanish for I+m+n=2 if n=1, 2.

Thus for [4+m+n=3,
EZ'In?L:O; Fl'm'n=0» if n=1» 2’ 37

hence also Hyun, Kpmn both vanish for I4+m4+n=3 if n=1, 2, 3. And so on: all the
coefficients Hy,p, Kynn vanish if

n>0;

that is, the quantity ¢ does not actually occur in the expressions for # and y which
accordingly are regular functions of ¢ and ¢logt.

The theorem is therefore established.

Note 1. Any term in # and y is of the form
K™ (tlog t)",

that is, K™t (log¢)"; and therefore the index of log¢ is never greater than the index
of .

If, however, the equations were

¢ Z—‘f =+ at + ct log t + ZZZZaypg «y/t? (¢ log 1)1

>

¢ % =y + bt + ¢'t log t + SESSby,, a'yitr (t log )1

where 147+ p+¢>2 for the summations, then the values of z and y satisfying the
equations are

z=—%ct (log t)* + atlog ¢ + Cif + SESH tl€m¢“}
y=—4ct(log ty + bt log t + Cif + SSZ K, 107 )

where ¢, 6, ¢ have the same values as above, and the summations are for values of
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l, m, n such that {+m+n>2: and the coefficients Hy,,, K, are determinable as
before. Any term in z is
Htl+m+n (1Og t)m+2n,

that is, the index of log ¢ is not greater than twice the index of ¢

Note 2. If @ vanishes but not b, the solutions are still non-regular functions of
¢; likewise if b vanishes but not . In these cases, it is known that no regular integrals
vanishing with ¢ are possessed by the equation.

If a=0, b=0, then Hy,=0, K;,=0, if m>1: that is, ¢log¢ disappears from the
expressions for # and wy, which then become regular functions and are the double
infinitude of regular integrals that vanish with ¢ In this case, the regular integrals
are the only integrals vanishing with ¢ that are possessed by the equation.

20. Second sub-case: x mot zero.
The theorem is:

The equations possess in general a double infinttude of non-regular integrals vanmishing
with t which are regular functions of ¢, tlogt, +t(logty; and ut vs known that there
are no reqular integrals which wvanish with t. If however a=0, then the integrals can
be arranged in two sets; one vs a svmple infinitude of mnon-regular integrals vanishing
with t which are regular functions of t and tlogt; the other s the simple wnfinitude of
regular tntegrals vanishing with t which the equation is known to possess. (It is necessary
that the constant « be different from zero: otherwise some of the coefficients in
the second set are infinite unless b also is zero, in which form we revert to the first
sub-case already considered.)

The method of establishment is similar to those which precede: it need therefore
not be repeated after the many instances of it which already have been given.

The initial terms in the integrals of the equations as taken in § 15 are
th=ab+ At + ...,
,=radp+(kd +0)0+Bt+ ...,

the unexpressed terms being of higher order in ¢, 6, ¢: here A and B are arbitrary,
f=tlogt, and ¢p=4%¢(logt)> Any term in the expansion of ¢ or ¢ which involves ¢
contains « in its coefficient; the disappearance of the terms in ¢ from the integrals
in the first sub-case is thus explained, for « then is zero.

Concluding Note.

21. Some sub-cases still remain over from Case I(a), when the roots & and &, of
the critical quadratic do not satisfy the conditions that (§8) prevent some one (or
more) of the quantities

()“_1)‘§1+/“’E2+v: >"El+(lu’—1)§2+yf
Vor. XVIII. 12
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from vanishing for integer values of A, u, » such that A+ u+»>2 The real parts of
£, & are supposed to be positive.

The instances that can occur are obviously for A=0 in the first set and w=0 in
the second set; both are included in the form

E=pn+v,

where £ and 7 are the roots of the quadratic, and p+v>2. The cases u=0, p=1,
have already been discussed. For the remaining cases, we have the theorem: The
double infinitude of mom-regular integrals vamishing with t are then regular functions of
t, t, t*1+vlogt, where p and v are integers. It can be established in the same manner as
the similar theorems in the preceding sections.



IV.  Ueber die Bedeutung der Constante b des van der Waals'schen Gesetzes.
Von Pror. BorrzmanNn und Dr MAacHE, in Wien.

[Received 1899 August 14.]

IN dem Buche von Professor Boltzmann ¢ Vorlesungen iiber Gastheorie, 1. Theil”
wurde die van der Waals'sche Formel aus der Vorstellung abgeleitet, dass die Gasmolekiile
Anziehungskrifte auf einander ausiiben, deren Wirkungssphéire gross ist gegen den Abstand
zweier Nachbarmolekiilee. Der Fall, wo diese Annahme nicht mehr zutrifft, wurde in
demselben Buche auf Seite 213 kurz behandelt. Es zeigt sich, dass dann Erscheinungen,
wie sie bei der Dissociation zwelatomiger Gase vorkommen, nicht eintreten konnen, falls
die Anziehungskraft gleichmissig nach allen vom Atomcentrum ausgehenden Richtungen
wirkt. Die an jener Stelle abgeleiteten Formeln konnen aber beniitzt werden, um die
Zustandsgleichung zu entwickeln. Es wurde dort die Annahme gemacht, dass die daselbst
mit y bezeichnete Grisse constant ist. Lassen wir diese Annahme fallen, so tritt an
Stelle der Formel 233 allgemein der Ausdruck

o+8
,.'_/L_% = 27Tn1/ 72 d/rg?hf lf').

n, 14

'

Es wird also jetzt angenommen, dass die Trennungsarbeit von der Tiefe abhéingig ist,
bis zu welcher das Centrum eines zweiten Molekiils in den kritischen Raum des ersten
eingedrungen ist. Dagegen soll zunichst der Fall dahin vereinfacht werden, dass die
Anziehungskraft innerhalb dieses kritischen Raumes constant bleibt. Dann wird

Jf(r)=C(c+8—r).
Schreibt man zur Abkiirzung 2hC =c¢ und fithrt die Zntegration durch, so hat man

2 2
;;(7;? {363 [(co+12+1]—[(co+6+1)1+ 1]} - g .

Ny =

Es gilt aber allgemein fiir ein Gasgemisch aus n; und n, Molekiilen verschiedener
Art die Beziehung _
mc?

PV =g~ (m+ny) = MRT (n + ns).
12—2
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Nennen wir @ die Zahl der Molekiile bei vollkommener Drissociation, so ist
w="n,+ 20y, =0y + kN2
Hingegen ist die Zahl der freien Molekiile im betrachteten Zustand

a+n
n=mt =g ',

Durch Elimination von n; und Entwickeln der Wurzel findet man hieraus den Niherungs-
wert n=a-—g_;f und folglich auch weiters
2
pV=aMRT— E%Ri@ .
Ist aber m die Masse eines Molekiils, u das Atomgewicht, v das specifische
m am 1

Volumen, endlich » die Gasconstante des betrachteten Gases, so ist M=—, =5
o v

endlich %%:T und es wird auch

gL _orT
p= v o ©
oder wenn man auf den Ausdruck fiir « zuriickgeht

_717 l 2mrT
P=77"2" om

(€ [(co+1)2+ 1] = [(co+ 6 + 1)+ 1]} =¥_%,

Hiebei ist aber in » noch der von den Deckungsphiren der Molekiile ausgefiillte Raum

p=%.§7r0'3 abzuziehen. Wir erhalten also als Zustandsgleichung
T4
L O
Zur Discussion dieser Formel finde noch folgende Betrachtung Raum. Es ist, wie
man sich leicht durch Rechnung iiberzeugt,

e 1 2§ 9 <§)2
5 2 _ B 2 = 352 n—) - 4 9 g
e?[(co+ 132 +1]—[(co+ 8 +1)*+1] 008151(08) i Raltor s Ratmaressnl B

\ 2

- 29 9 @)

Ferner ist A =l 2mra2drT ’Liw (¢ 1 +—o-—+—9-—

m’ ol n! n+l! n+2t°
Bs gilt weiters die Beziehung o= 2hC= 2 . }
s gilt weiters die Beziehung —e= = T
Setzt man endlich 1 .27mad =a, G2 =4, - €,
m wr )
. 1 9
so ist auch p=—.4mc*=Zae

m"°
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und es ldsst sich die obige Zustandsgleichung in der Form schreiben :

rT arT "=°°(§\"—1{1 2 2 }
St

= - +
v—2ae (v—2ae)? 21 \7

r nl T arlle ny2le

Die Constanten dieser Gleichung haben folgende Bedeutung:

Es ist a gleich dem halben im Volumen der Masseneinheit vorhandenen kritischen
Raume,

Br = 707—;8 gleich dem Potential der Anziehungskraft auf der Oberfliche der Deckungs-
sphére,
endlich e =35 gleich dem Verhéltnis aus dem Durchmesser des Molekiils und der

B
Distanz, auf welche die Anziehungskraft wirkt.

Da die Gleichung 233, von welcher wir ausgegangen sind, voraussetzt, dass die
Anzahl der Tripelmolekiile gegen die Anzahl der Doppelmolekiile verschwindet, so ist auch
die obige Gleichung an die Voraussetzung gebunden, dass die Abweichungen des Gases
vom Boyle-Charles’'schen Gesetze noch klein sind. Es darf also auch das letzte Glied unserer
Gleichung, welches ja den Innendruck darstellt, nicht iiber einen gewissen Wert hinaus
wachsen. Dies wird um so weniger der Fall sein, je grosser e ist. Aus den Versuchen
von Admagat und Andrews tber die Compressibilitit des Kohlendioxyds berechnet sich e
fiir dieses Gas zu ungefihr 100. Nach dieser Vorstellung scheint also der Anziehungs-
bereich sogar noch relativ klein zu sein gegen den Durchmesser des Molekiils.

Wir haben bisher unsere Zustandsgleichung abgeleitet, indem wir fir f(r) ein
bestimmtes einfaches Abhiingigkeitsverhéltnis einfithrten. Lédsst man f(r) ganz will-
kiirlich, so ergibt sich leicht, dass dies den Typus der Zustandsgleichung, auf welche
man kommt, in keiner Weise verindert.

rT
v—p (v—p)
Dies gilt freilich nur solange man die Anzahl der Tripelmolekiile und der noch
hoheren Congregationen vernachldssigen darf. Ist dies nicht mehr der Fall, so werden
noch weitere Glieder hinzutreten, welche in ihren Nennern das v —p in der dritten,
vierten und hoheren Potenzen enthalten. Es ergibt sich dann fiir p eine Potenzreihe,
wie sie dhnlich auch schon Herr Professor Jédger von anderen Betrachtungen ausgehend
aufgestellt hat. Leider begegnet die Auswertung ihrer weiteren Coéfficienten kaum zu iiber-
windenden Schwierigkeiten.

Es wird stets p= und es ist nur noch 4 von f(r) abhingig.

2



V. On the Solution of a Pawr of Simultaneous Linear Dyfferential
Bquations, which occur wn the Lunar Theory. By Erxest W. Brown,
Sc.D., F.R.S.

[Received 1899 July 14.] -

IN the calculation of the inequalities in the Moon’s motion by means of rectangular
coordinates a certain pair of differential equations is continually requiring solution. The
left-hand members are linear and always the same; the right-hand members are known
functions of the independent variable—the time—and vary with each class of inequalities
considered. It has been the practice to obtain the required particular integral by assuming
the solution (the form of which is known) and then to determine the coefficients by
continued approximation. This method is troublesome to put into a form which a com-
puter can use easily and is besides peculiarly liable to chance errors; a large number
of processes would have to be learnt before the computer could proceed quickly and
securely. The main object of this paper is to put the solution into a form which will
avoid these difficulties, but I believe that some of the results may be found to be of
a more general interest. Further, the question of the convergence of the series used
to represent the coordinates in the Lunar Theory may be somewhat narrowed. In fact
it being granted that the series forming the ‘Variation’ inequalities and the elliptic
inequalities depending on the first power of the Moon’s eccentricity are convergent, it
is not difficult to demonstrate, by means of equation (14) below, that all the terms
multiplied by a given combination of powers of the eccentricities, inclination and ratio
of the parallaxes, that is, all the terms with a given characteristic, form a convergent

series.

The equations to be considered are

d2z ,dy ;o
W—Qn %+Lx+Ly—R,
d*y d

ant 211’79; + Lo+ L'y=FR,
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where
L, L cos . ’
7/ are of the forms pI sin (2 4+ 1) (n—n)(t—t,),
R, cos . /
R of the forms Z;¢; sin ft@@—t)+ (- tl)}.(n — ),

to, t, 7, m, W, ¢; being known constants, and ¢ taking all positive and negative integral
values; 7 1s either an integer, in which case ¢, =¢, or is incommensurable with an
integer.

The corresponding particular integral required is, in general,

*_ PicoS

y T 'pisin

If we substitute this solution in the differential equations and equate to zero the
coefficients of like periodic terms, we obtain an infinite series of linear equations with an
infinite number of unknowns. The series are assumed to be convergent and in most cases
the coefficients diminish rapidly as ¢ increases. Nevertheless, it is frequently found

necessary to proceed as far as ¢=+ 5, demanding the determination of about 20 unknowns

[it=t) +7(E—t)) (n—n).

from the same number of equations.

In the determination of the latitude the equation

d2 /7
dktj'i' le-_-——R >
occurs; L,, R” arve of similar forms to L, R, respectively. If 2, z be two particular

integrals of

d2
£+le=0,

it is known that the particular integral required is

z.O=zzleR”dt—zl LR dt,

where (' is a constant given by
dz, dz,

C=zl—c—it——-22%.

I shall show in what follows how we may obtain a similar expression for the solution
of the simultaneous equations above, having a sufficiently simple form to be of use in
computations. Later the significance of the solutions is explained and certain exceptional
cases occurring in the Lunar Theory are treated. The results obtained have in fact been
used in the calculation of the terms of the third* and fourth orders in relation to the
eccentricities, the inclination and the ratio of the parallaxes.

* Mem. R. 4. S., Vol. riir. pp. 163—202.
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1
In order that the series which occur may be all algebraical instead of trigonometrical,
we use the conjugate complexes u, s, where
u =+ Y, §=x — Y.

We also put
E=exp.c(n—n")(—t),

d 1 d
ngd—g’_b(7z—7z’)a_i’
m=—" 5 th=0=t.

n—mn

The generality of the results is not affected by the last supposition.

The simultaneous equations then take the form

<D+m>2+M“+NS=A} .................................... 1
(D=my+Ms+DNu=4 )
where M, N are of the form Zp;¢,
A is of the form zpié‘m'«}-l—k-r_*_zp’i:zih—.,, | 1=0, + 1,
M= M.

The bar placed over a letter or expression denotes here and elsewhere that . has been
changed to —¢, that is, £ put for &
To obtain the particular integrals of equations (1), it will first be necessary to obtain
four independent particular integrals of
(D+myu+ Mu+ Ns=0 )
(D—=m)s+ Ms+ Nu=0 f
Denote these integrals by
u=u;, s=s, j=1,2,3, 4,
so that if ); denote an arbitrary constant, the general solution of (2) is
’LL=ZJ'Q]"LL]', S=2ijSj, ]=1, 2, 3, 4.
By supposing the ; to have variable instead of constant values we can then proceed
to find a particular integral of (1) and thence their general solution.

In order to make certain of the later arguments clear it is necessary to indicate the

manner in which the equations (1) arise.

The equations

3 KU
2 — 2 (; —_—— —
Dy + 2m Du + zm (u+s) syt =

3 «S
20 9 el 2 —_— =
D% — 2m Ds + 50 (w+3s) sy 0,
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with their first integral,
2k

_ B e (us sy 2
F:Du.Ds+4m (u+s) +(u8)%— ,

admit a particular solution,

u=1y=30;0*", s=s,=3Za_;{",

containing two arbitrary constants; these constants are the quantities denoted by n, f,
above. The coefficients «; are functions of » and the known constants present in the
differential equations.

Put WU=Uy+ Uy, S=8+ 8,

and, after expansion in powers of u,, s, neglect squares and products of these quantities.
Omitting the suffix, and giving proper meanings to M, N, the resulting equations
become those denoted by (2) above.

The first integral F = C' becomes

=a—F—u a—F:s—O

~ ou, +Bso e
If, however, we had. deduced this first integral directly from (2), it would have been
¢=0C", where ¢’ is an arbitrary constant. When the equations (2) are considered inde-

pendently the constant ¢’ must be retained.

Three independent solutions of (2) are known. In finding the principal part of the
motion of the lunar perigee Dr Hill* gave one of them, namely, w= Du,, s=Ds, and
obtained the forms of the other two; the coefficients of the latter have been obtained
by myself+. It is therefore only necessary to find a fourth solution, linearly independent
of the other three, in order to obtain the general solution.

1L

The Fourth Integral of the Equations.

D+mlEu+Mu+Ns=0.cooiiiiiiiniiiiiiiiinn, 3),
(D=m)s+Ms+ Nu=0.ceeeeiiiiiaaeaeiiaaaanannnnns 3).
The known integrals may be denoted by
U, = Ei € §2i+1+c, : 8 = 27 El—i §2i—1+c .
Uy = 2 £, S =36 &0 (4).

Uy =5 (20 + 1) a; &, sy =32;(2 — 1) e

* Acta Math. Vol. viir. pp. 1—36. 4+ Mem. R. 4. 8. Vol. L. p. 94.

Vor. XVIIL 13
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If @, Q., @ be three arbitrary constants, then

U= E,-quj, S=2ij8j, j=1, 2, s . (5)
is a solution of the equations. Owing to the introduction of @, @, @5, we can consider
U, ... 83 completely known; c¢ is a constant which is supposed incommensurable with

unity.

To discover the fourth integral, the method of the Variation of Arbitrary Constants
is used in the usual way, by assuming that

u, D@y + 1, D@, + 1, DQ; = 0.
By substituting (4) in the differential equations we find
Du,.DQ, + Du,.DQ, + Du;. DQ; =0,

5 (8;D%Q;+ 2Ds;. DQ; — 2ms; D) =0 wovvvnnneiininiiiiis (6).
Put Uy Dy — uy Du, = oy, ete.
Then DGy _ DG, _ DG _ L, suppose.
o o oty
Substituting in (6), the equation for L may be written,
(Sas) DL + 2L D (Sas) — L (ZsDo + 2mZas) = 0...covvivrneiinennnnnnns (6"),
where Sas = a;8; + a8y + a5, ete.

The last term of this equation can be shown to be zero. Substitute u,, s and u,, s,
successively in (3): multiply the resulting equations by s, s, respectively and subtract.

We thus obtain
(D + 2m) (s, Du, — 8, Dwy) + (m? + M) (8,2 — u,8;) = 0.

Also, treating (3') in a similar manner,
(D — 2m) (uyDs; — uy Ds,) + (m? + M) (u,8; — 8,u,) = 0.
The sum of these two equations is integrable and gives
83 Duy — 1, D8, 4+ 1y Dsy — 8, Duy + 2m (Sp2; — s8y) = O,
where (), is a constant. It should be noticed that this constant is not arbitrary since
the values of w,, s, u,, s, were definitely fixed, so that (), may be treated as a known
constant.

Denote the last equation by

Je="Ch i (.
We find in an exactly similar manner

Fo= Oy Fr= ot eeeeeeeeeeeeeeeeeeeese e (7).

Multiply these three equations by u,, u,, u; and add. Noticing the meanings attached

to a;, &, a3, we obtain
u, Oy + 1, Oy + u, Chpy = Sats.

Similarly 0 = uy Dfos + w. Dy + us Dffso
=YsDa + 2m3as.
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Substituting the last result in (6’), we find

DL | D(Zas) _
A 2 Sas

0)
which, on integrating, gives

I L L

- (2&8)2 - (ul Cos + 1, Co + us C)*’

where L, is a new arbitrary constant.

o

Th = -1
ence @ =(@Q)+L,D @Ot uC T O ete.,

in which (@) is a new arbitrary constant and D~ denotes an integration, ie. the operation
inverse to D.

If, finally, we now let @, @, @, Q. represent four arbitrary constants, the general
solution of (2) is
U= Qs + Qs + Qs + Quuy,
s=@Q8 + Qus, + Qss; + Qusy,

1 % .
(1‘1023 + 1, Oy + u'3012)2 )= 1, 2, 3.

where wy = 25u;D~

This result is true whatever particular solutions are represented by
Uy, S 0 Ugy Sy ¢ Uy S
as long as they are linearly independent. As, however, the expression for u, can be

very much simplified by using the values given earlier, I shall immediately proceed to
the special case under consideration.

It is easy to show that Cy=0=0C,. For, looking at the forms assumed, we see
that w,, s, contain the factor ¢° u,, s, the factor ¢ and u,, s, have no such factor.
Hence f; has the factor ¢°, f,, the factor {=° As c is supposed incommensurable with
unity, the equations (7’) are only possible if (3 =0 and Oy =0.

Hence we have

Uy Dy — 1, Du, +uD Uy Dty — 1y Duy
L T S

Uy Dug — uy Dus, o
st u, D 2 2
Uy Uy Uy

u, 02 =u, D™

The first two terms of the right-hand side are integrable and become

u, U
u1—2—u2—3,
Uy Uy

that is, zero. Whence considering () as absorbed in the arbitrary @,, we have

w, Dy — us Dut

Uy = Uy D71 <~—»—~——1 Lo 1)

Us
We may similarly show that

$,Ds, — 8, Ds

som D (L5805

T 5

13—2



100 Mr BROWN, THE SOLUTION OF A PAIR OF SIMULTANEOUS LINEAR

II1.
Although this is probably the simplest form obtainable for u,, it is unsuitable for
calculation. The values of u,, ... are all of the form
sum of cosines+: (sum of sines).
To adapt u, to calculation it is best to express it in the form
us (P + Q1)
where P, @ are real. I shall show that
% _ p (ulDur2 - ugDu1>

Usg Ug?

PR Crlnl LSS ) {&_w@m%_&s)} _______________ ).

UsS3 UsSs3 UsSs Us S5

Since fo=0=fy and fi,=0Cy, we have
L Co  wfs—wfs | fo _ wDu,—u,Du + uy Dy — u, Dsy + 8, Dy — 8, Dy

U3 Sy U3 UsS3 ug? PATEN
S1Uy — Uy Sy Dty Sy Uy — Uy Sy Uy Duy — uy D, 1 (5% s
e =— - +3
Uy Ss Ug UySy Uy Uy Sy

S — U S, (Du3 _ D33> g St = s

Us Sy Uy S5 Uy Sy

Submitting this to the operation D' and transposing we obtain the required expression.
It is easy to see that (9) is of the required form. For when we put —¢ for 4 that
is, & for ¢ the expressions
Uy, Us, S5, Soy Usy, S5, D7 D respectively
become Sa, 81, Ug, Uy, — Ss, —a,, — D, -D;

the first term of (9) is therefore unchanged, while the second term simply changes sign.
Hence the first term is real and the second a pure imaginary.

IV,

It is necessary to examine the four solutions and especially the one last found a

little more closely. Write
us=u; (P + D1P).

The expressions (4) show that P and P,, being both real, will be expressible as sums
of cosines of multiples of the angle 2(n —n')¢. As P, contains a constant term B, D7P,
contains a term of the form ¢Bt(n—n'), and therefore u, is of the form

ug {¢Bt (n —n’) +a power series in &2},
It is therefore of the same form as u;, except for the part
«Btug (n—n').
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We saw earlier that the equations (2) admit of a first integral

¢=C,
and that this should be derivable from the integral
F=0,

of the non-linear equations when the former are considered as derived from the latter.
The constant €’ should therefore in this case be zero. It is easy to see that the constant
is zero when we substitute in ¢ the solutions wu,, s, or u,, s, or us;, s;. For the solution
uy, 83, the constant takes the value C,, which is not zero. Hence though (w,, s;) belongs
to the linear equations (2) it plays no part in the non-linear equations from which these

were derived.

The solutions u,, s, and wu, s, are those used in developing the Lunar Theory; they
contain the terms dependent on the first power of the lunar eccentricity. It is necessary
to see why the solutions us;, s; and w,, s, are not used in the development.

The particular solution of the original equations of which use was made was
=1, S=S,
where wy=2;0; &% =3,0a; exp. (204 1) (n—2n')(t —t,).
If we add a small quantity 8¢, to ¢ (which is an arbitrary constant of this solution)

the resulting expression will still be a solution. Expand in powers of &, neglecting squares
and higher powers. The additions to u,, s, will be

8u=%} 8ty =—Du,.8t,, 8s= a—j’&o = — Ds,. 0t,.
0 0

These values when substituted for u, s in (2) must satisfy them independently of the
value of &, Hence w=FkDu, s=kDs is a solution obtained merely by altering the arbitrary
t, and is therefore unnecessary for the development of the Lunar Theory.

The other arbitrary constant in u, is n, and the coefficients a; are functions of n. If
we make a small addition én to n and proceed as before we see that

s
on’ TV

is a solution of the linear equations (2). It is only necessary to identify this with wu,, s,.

u==k

The forms for both are evidently the same. For we have

%%0= 3 {%% +(2i+1) (t—t,) aik exp. (2i+1)(n—n) (¢ =)

oa; . ’
=z,-a%exp. (2 +1)(n —n) (t = t,) + (t — t5) Du,.
The terms with ¢ as factor agree (f, was put zero in the expression for wu,) when
the proper constant factor is introduced, and the remaining parts are of the same form.
As no linear relation can exist between the first three solutions and either of the forms
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for the fourth solution, these two forms must be the same except as to a constant
factor. Hence

on \ U2

oty _, (W Duy — uy Duy
ug D™ | 2 .

This relation is a somewhat remarkable one. In investigations where the arbitrary

oy
> on
(which are the most troublesome to find) when the numerical value of the ratio m'/n has
been used in finding #, y. A .direct proof of this relation is desirable. This and the
theorems which I have given elsewhere* are probably particular cases of some much more
general theorem. Thus, of the four integrals of the linear equations two only are required
for the development of the lunar theory, the other two arising from additions to the
arbitrary constants in the particular solution of the original equations.

. .. Ox
constants are varied—and there are many such—we have a means of obtaining n

V.

Having obtained the solution of
D+ m)*u+ Mu+ Ns =0,
(D —m)*s + Ms + Nu=0,
in the form w=3Qu, s=2Qs;, j=1, 2, 3, 4,
the next problem is to find the solution of
(D +m)u+ Mu+ Ns= A,
(D—m)ys +Ms+ Nu=4,
where A, A are functions of the time.

Following the usual method of varying the arbitraries we have

SDu.DQj=A, 3Ds.DQi=A4

These must be solved in order to find the variable values of the arbitraries. The only
difficulty is to find these values in forms sufficiently simple to be of use.

The expressions at the end of IL. show that we can derive s,/s; from w,/u; by putting
¢ for ¢ and changing the sign. For wu,, s, interchange as do wu,, s, while D changes
sign: u; becomes —s; Since

uy=u; (P +'Q),

we have 8i=8; (— P+ Q).
Hence Uy 83 — Syly = 21383 P
S U8y — UgSy v ereeannninienaae et (11)

by the result obtained in III.

* Proc. London Math. Soc. Vol. xxviir. pp. 143—155.
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Again, as the first integral obtained in II. is equally applicable to w,, s,, we have
Css = fos= 83 Dug + uy Dsy — uz Dsy — s, Dy + 2m (8,5 — u,85),
which, by inserting the expressions for wu,, s, just given, becomes
' Oy = — 2 (83 Dy — u; Ds;) P — 2014,8, DQ + 2m (5,2, — 1y8,),
or, using the values of P, @ obtained in III,
Cys = — (83.Duy — u; Dsy) Wb Cr
U383
Do, _ 25?) + 2m (8, — $,Us),

+ (81Uy — Uy 8,) <:2m + w s,
whence Gt ==l evvveniiiiiiiiieic i
We can show as in II. that Cy,=0=C,.

Solving equations (10) we obtain

A
DQ; =
Q] A ’
where
A =| Du,, Du,, Du;, Du,
Ds,, Ds,, Ds,, Ds,
Uy, Uy, Us, uy |
81; 827 83, Sy
Ay =| A, Du, Du;, Du,
A, Ds,, Ds,, Ds,
, ete.
0, Uy, Uy, Uy
0, & 8 &

In the determinant A the first minor of Du, is
Ds, (38, — S3tty) + Dsy (w8, — $ys) + Dy (g8 — Spu3),
=8 far + 85 fio F Sifas,
= 5,04 + 8,0 + 5,0,5.
Also, the first minor of Ds, is similarly
— (uy Oy + 13 Cp + 1, Oy).
The other minors of the elements in the first two rows of A are similar, the suffixes
following a cyclical order. We have thus all the minors of the elements A, A in the
determinants A;.
Remembering that () =— 0, and that all the other constants Cj; are zero, we obtain
A, = — (54 +u, 4) Cy,
A= (4 +ud) 0y,
A= (s A +ud) Oy,
A== (4 +u, d) O,

and A= — (s, Du, — 8, Duy, — s, Dug + s;Du) .
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But the effect of putting ¢~ for ¢ in A is only to interchange an even number of
rows and columns and therefore to leave A unaltered. Making this change in the last

equation we find
A=— (—u Ds, + u, Ds; — uy Ds; + 8, Dut;) Chs.

Whence, by addition, }
2A = — {fio — 2m (S, — Up8y) — Sy + 2m (8425 — y8;)} O
=— (O — Cy) Cly=— 20,2,
in virtue of (7) and (12). Hence A=-C

A, s, A +ud

Finally, AQ, = AT 0, ete.
and Q= 1 D (5,4 + w4), ete.
012
And the particular integral corresponding to the right-hand members, 4, 4, is
U= 01— (1, D7 (8,4 + u, A) — u, D (8, 4 + 1, A)
—u D (s, 4 + u ) + u, D7 (s 4 + u;;ﬂ)} ...... (13),
5= 2 (5D (5,4 + 1 d) = 5, D (5,4 + 1. 4)

52

2

- 5Dt (8,4 + u,A) + 5, D7 (s 4 + ugﬁ)}.

It is easy to see that s is derivable from u (as it should be) by putting ¢ for ¢ In
fact, the coefficient of w, in the first term is conjugate to that of u, in the second term,
that of w; in the third term is a pure imaginary and that of w, in the last term is real.

VL

In the applications of this result to the Lunar Theory 4 is always an expression of
the form
2iqi§i+f+2iqi,§i~f’ 1:=O’ + 17 + 2; veey

where 7, ¢;, ¢/ are known constants; 4 is derived from 4 by putting & for ¢ Thus 4,
4 are conjugate complexes whose real and imaginary parts are respectively sums of cosines
and sines. The corresponding particular integral should in general be of the same form.
Hence a difficulty arises owing to the fact that u,, s, contain ¢ in a non-periodic form. I
shall now show that in general all the non-periodic parts disappear from the particular
integral.

Put
uy=uy + 1 Bugt (n — n'),

8s= 8§ + tBs;t (n —n).
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Then w/, s/ are periodic. The sum of the third and fourth terms of (18) becomes

—us D7 (s/ A + uJZ) +u/ D (s34 + u3fT)

— [uy D7 (854 +uy A) t) + u,t D7 (8,4 + 1 A)] B (n — ).
The first line of this expression is in general periodic. ~The second line becomes, on inte-
grating its first term by parts,
uy BD™2 (s34 + uz 4).

The non-periodic part thus disappears.

When we perform the double integration involved in this last expression, we obtain

1, {Cy 4+ Cye (n—n') ¢ + periodic part}

where C,, O, are arbitraries. The terms containing C,, C, are simply parts of the comple-

meuntary function and may be considered as contained in @Qu,+ Qu,. The particular
integral may therefore be written

w= % [u, D7 (8,4 + 'ugf_f) —u, D71 (s, 4 +¢¢IZ) +u/ D (s 4 + ugz)
12 .
—u D7 s/ A +u/ A — BD7 (8,4 + w, A)]]......(14),

which is its final form.

VII.

In general this particular integral consists only of periodic terms. There are, how-
ever, two cases in which non-periodic terms may arise. If T=an odd integer, that is,
if 4 is of the form X¢;&**), the integrals multiplied by w, and wu, might give rise to
terms of the form af where a is a constant.

In this case, s;4 +wu,A is of the form 2B; (§¥ — &%) and therefore its integral will
be periodic. The last term of (14) is of the form
— 1, D7 (const. + power series in ?),
= —uy (tk + &’ + power series in &),

k, k¥ being constants, the former definite and the latter arbitrary. The terms — u;(th+ k')
may be written

k ke,
Bi(n—n') 3 (n—n)’
The first two terms of this may be considered as included in the part @yu;+ Qu, of the
complementary function; the last part is definite and periodic. Hence no mnon-periodic

part remains.

— K us— {ustBe (n — n') + w,'}

The second case of non-periodicity occurs when
A =3,q; e 4 3g, L,
Here the first two terms of (14) may give rise to the non-periodic part
{wte (n —n) [, 4 + ugg]o — bt (n—n')[s;, 4 + uIZ]O} +Ch,
Vor. XVIII. 14



