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The equation of a circle cutting zz+ K =0 orthogonally
18 2z + pz+pz — K =0. »

Let C( - p) be the centre, P(2) and P’(2") a pair of inverse
points.

P'(z’)

P(z)

C(-2)

F1a. 99.

Let the complex numbers represented by CP and CP’

be u, . Then
: 2= —p+u, Z=-p+u.

Also, since u, w' have the same amplitude, and the

product of their moduli is equal to the square of the radius

of the circle of inversion,

wu’ =pp + K.
Therefore (z+p) (z' +p) —pp - K =0,
or 22’ +pz+pz' - K =0,
—pz "+ K

2.e. =
Z+p
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A second inversion in the circle zz + gz +qz - K =0 gives
(K +pg)2" - K(p - q)

. (P-92"+(E+pg)
This will not hold when the circle of inversion is a straight
line § =¢. Here inversion becomes reflexion, and we have

z=rel, ¢ =re-0 2" =yre®-2).
therefore 7 =2'e"®,
This combined with an inversion gives
-p?’ +K o

Let ¢:Z;—1p, B=e¥; then e’ = —¢-2¥ = —g. Then,

if pB=aq, the transformation becomes

Hence 1n either case the transformation is of this form.
Hence the general displacement of a plane figure 1s equivalent
to a pair of inversions i two circles which cut the fundamental
circle orthogonally.

33. Types of motions.

In the general displacement there are always two points
which are unaltered, for if 2’ =z we have the quadratic
equation

B22 +(a —a)z + KB =0.
If we substitute z= — K/2’, the equation becomes
Bz'2+(a~a)? +KB=0;
therefore 2’ is also a root. The two points are therefore
Inverses with regard to the fundamental circle. This
Point-pair corresponds to the centre of rotation in the
eneral displacement. In hyperbolic geometry there are



186 CONCRETE REPRESENTATIONS  (v. 34

three distinct types of displacement according as the
centre of rotation is real, ideal, or at™infinity. The fipgt
case 1s similar to ordinary rotation; the second case is
motion of translation along a fixed line, and points not o
this line describe equidistant-curves; in the third cage
all points describe arcs of horocyecles.

34. The distance-function.

We have now to find the expression for the distance
between two points P, ), i.e. the function of their cq.
ordinates or complex numbers (z;, z,), which remaing
invariant during a motion.

The two points determine uniquely a circle cutting the
fundamental circle orthogonally in X, VY. This circle
represents the straight line joining P@), and X, Y represent
the points at infinity on this line. If the motion is one
of translation along this line, the straight line as well ag
the fundamental circle are unaltered, and X, Y are fixed
points. Let x, y be the complex numbers corresponding
to X, Y ; then the cross-ratio (2,2,, xy) remains constant,
If we suppose, therefore, that for points on this line the
distance (P@) is a function of this cross-ratio, we can write
(PQ) =f(z, 25). If P, Q, R are three points on the line,
corresponding to the numbers z,, z,, 23, this function has
to satisfy the relation (PQ) +(QR)=(PR), or

J(z1, 29) +[(23, 23) =f(21, 23).

This is a functional equation by which the form of the
function is determined. Consider z as a parameter deter-
mining the position of a point, and differentiate with regard

to z,. Then, since
-z 25—y PX QY
(2122, wy)*zl_y' zz_x“‘Py' QX’
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we have

QY 3 (PX\ RY 2 (PX
J' (1 2 ) 0X 3 o <PY> =G ) By o2, <PY>'
Hence

(e, 2) QX R}_’=<Qf_ Iﬂ);(@f . QZ) (2129, 2y)
f(z,2) QY RX \PY RX/“\PY QX/ (22, xy)
ne. (2, 29) f' (21, 22) = (21, 23) [7 (21, 25) = const. = p.
Integrating, we find -
[z, 25) =ulog (2,25, xy) +C,
and substituting in the functional equation we find C'=0.

Hence
IT
(PQ) = log (2125, zy) = u log | \PY gX) wlog (PQ. XY),

(PQ, XY) being the cross-ratio of the four points P, @, X, Y
on the circle, 4.e. the cross-ratio of the pencil O(PQ, XY),
where O is any point on the circle.

In hyperbolic geometry K = —%?, and the fundamental

circle is real. The distance between two conjugate points
8 Ljrk, and the cross-ratio (P, XY) = —1. Then

(PQ) =
Therefore u =£.

35. The line-element.

Hf, returning to the stereographic projection, we take the formulae
I §22, we can find an expression for the line-element ds. We
ave, x, y, z being the coordinates of a point on the sphere,

dst=dax® + dy? + dz®.
Expressing this in terms of " and ¥/, we get
4k (dx'® + d;z,/ﬂ
(@2 +yt+dr)p

ds? =
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In particular, if d=2Fk, so that the plane of projection is tpe

tangent plane at 4 (Fig. 92), we get =
ds=n/dx* +dy" /{1 +ta(z2+y"%)},

where a =1/L2

36. There is a gain in simplicity when the fundamentg)
circle is taken as a straight line, say the axis of . Thep
straight lines are represented by circles with their centreg
on the axis of z. Pairs of points equidistant from the gxig

F1a. 100.

of x represent the same point, and we may avoid dealing
with pairs of points by considering only those points above
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‘the 2-axis. A proper circle is represented by a circle lying
entirely above the z-axis; a horocycle by a circle touching
the z-axis; an equidistant-curve by the upper part of a
circle cutting the z-axis together with the reflexion of the
part which lies below the axis. |

Through three points 4, B, C pass four circles. If
4', B', (" are the reflexions of 4, B, C, the four circles are
represented by ABC, A'BC, AB'C, ABC’. The last three
are certainly equidistant-curves ; the first may be a proper
circle, a horocycle or an equidistant-curve.

37. Angle at which an equidistant-curve meets its
axis. :

Fig. 100 shows that the two branches of an equidistant-curve cut
at infinity at a finite angle, a fact that is not apparent in the Cayley-

vY

F1g. 101.

Klein representation. Let APBQA (Fig. 101) be the equidistant-
Carve, 4} B its axis, tepresented by the circle on A B as diameter,
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and let (' be the centre of the circle 4PB. Draw CX L AB meetiy,

the two branches of the equidistant-curve and its axis in P, Q, 7. s

' ¥4

CX

Let PAQ=2a; then CA4X =u, tan 4=
tance of the equidistant-curve from its axis.

The line PX being L 4B represents a straight line; it cuts 4 p

in X, and the second point at infinity on the line is represented i)

Y at infinity. ’

Let d be the g

PX ,
Hence d=klog(PM, XY)=klog 7=, also d=F log %.
Now CX=1(PX -QX);
-QX a1 ,
therefore tan (":PX or_1 (e" y ") =sinh ;Z'

2MX 2
We can get a geometrical meaning for this result. Draw PL | py

and PE||NE (Fig. 102). Then the equidistant-curve and the
parallel and the axis all meet at infinity at Z.

Fia. 102.

The angle LPE is then=a.

Consider a chord PQ of the equidistant-curve: like a circle, the
curve cuts the chord at equal angles. Keeping P fixed, let @ go to
infinity. P becomes parallel to NE, and makes a zero angle with
it ; hence the angle between the curve and the axis is equal to the
angle LPE.

The explanation of the apparent contradiction shown in the
Cayley-Klein representation, where the two branches of the equi.
distant-curve form one continuous curve, lies in the fact that the
angle between two lines becomes indeterminate when their point of
intersection is on the absolute and at the same time one of the lines
touches the absolute. If the first alone happens the angle is zero,
if the second the angle is infinite.
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38. Extension to three dimensions.

The conformal representation of non-euclidean geometry
can be extended to three dimensions, planes being repre-
sented by spheres cutting a fundamental sphere orthogon-
ally. A proper sphere is represented by a sphere which does
not cut the fundamental sphere, a horosphere by a sphere
touching the fundamental sphere, and an equidistant-
surface by a sphere cutting the fundamental sphere.

A horocycle is represented by a circle touching the funda-
mental sphere. The horocycles which lie on a horosphere
all pass through the same point on the sphere, viz. the
point of contact. This is exactly similar to the system of
circles on a plane representing the straight lines of euclidean
geometry, and thus we have another verification that
~ the geometry on the horosphere is euclidean.
~ This suggests that the three geometries can be repre-
sented on the plane of any one of them by systems of
circles cutting a fixed circle orthogonally.



CHAPTER VI.

“SPACE CURVATURE” AND THE PHILOSOPHICAL
BEARING OF NON-EUCLIDEAN GEOMETRY.

1. Four periods in the history of non-euclidean
geometry.

The projective and the geodesic representations of non-
euclidean geometry have an important bearing on the
history of the subject, for it was through these that Cayley
and Riemann arrived independently at non-euchdean
geometry.

Klein has divided the history of non-euclidean geometry
into three periods. The first period, which contains Gauss,
LoBacuEvskYy and Bowrval, is characterised by the syn-
thetic method, and applies the methods of elementary
geometry. The second period is related to the geodesic
representation, and employs the methods of differential
geometry. It begins with RiEMANNS classical dissertation,
and includes also the work of Hrermumorrz, LiE and
BeELTRAMI on the formula for the line-element. - The
third period is related to the projective representation, and
applies the principles of pure projective geometry. It
begins with CAYLEY, whose ideas were developed and put
into relationship with non-euclidean geometry by KLEIN.
To these a fourth period has now to be added, which is
connected with no representation, but is concerned with the
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logical grounding of geometry upon sets of axioms. It is
maugurated by PascH, though we must go back to von
StaupT for the true beginnings. This period contains
HirerT and an Italian school represented by Peano and
Pieri; in America its chief representative is VEBLEN.
It has led to the severe logical examination of the founda-
tions of mathematics represented by the Principia Mathe-
matica of RusseLL and WHITEHEAD.

2. “Curved space.”

If we attempt to extend the geodesic representation
of non-euclidean geometry to space of three dimensions,
we find ourselves at a loss, for the representation of plane
geometry alreadv requires three dimensions. It is quite
a legitimate mathematical conception, however, to extend
space to four dimensions. A limited portion of elliptic
space of three dimensions could be represented on a portion
of a “ hypersphere” in space of four dimensions, or the
whole of elliptic space of three dimensions could be repre-
sented completely on a hypersphere, with the understanding
that a point in elliptic space is represented by a pair of
antipodal points on the hypersphere.

A hypersphere is a locus of constant curvature, just as
a sphere is a surface of constant curvature. Analogy with
the geometry of surfaces leads to the conception of the
curvature of a three-dimensional locus in space of four
dimensions, and just as the curvature of a surface can be
determined at any point by intrinsic considerations, such
8 by measuring the angles of a geodesic triangle, so by
Smilar measurements in the three-dimensional locus we
‘Could, without going outside that locus, obtain a notion of

s curvature. *
N.-E, G. N
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3. Application of differential geometry.

This was the path traversed by Riemanx in his cele.
brated Dissertation. Space, he teaches us, 1s an example
of a “ manifold " of three dimensions, distinguished from
other manifolds by nature of its homogeneity and the
possibility of measurement. Space is unbounded, but not
necessarily infinite. Thereby he expresses the possibilitv
that the straight line may be of finite length, though without
end—a conception that was absent from the minds of anx
of his predecessors. The position of a point P can be
determined by three numbers or coordinates, x, y, z; and
if 2 +dx, y +dy, z +dz are the values of the coordinates for
a neighbouring point @, then the length of the small element
of length PQ, =ds, must be expressed in terms of the
increments dx, dy, dz. If the increments are all increased
in the same ratio, ds will be increased in the same ratio,
and if all the increments are changed in sign the value of ds
will be unaltered. Hence ds must be an even root, square, -
fourth, etc., of a positive homogeneous function of dz, dy, d-
of the second, fourth, etc., degree. The simplest hypothesis
is that ds? is a homogeneous function of dz, dy, dz of the
second degree, or by proper choice of coordinates ds?=a
homogeneous linear expression in dz%, dy% dz% For
example, with rectangular coordinates in ordinary space,
ds? =da? + dy? + dz2. .

By taking the analogy of Gauss’ formulae for the curva-
ture of a surface, Riemann defines a certain function of the
differentials as the measure of curvature of the manifold.
In order that congruence of figures may be possible, it is
necessary that the measure of curvature should be every-
where the same ; but it may be positive or zero. (Riemann
had no conception of Lobachevsky’s geometry, for which
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the measure of curvature is negative.) He gives without
proof the following expression for the line-element. If
a denotes the measure of curvature, then

ds =/Sdz?/(1 + LaSx?).

(Cf. Chap. V. §35.) If kis what has already been called
the space-constant, ¢ =1/k2

4. Free mobility of rigid bodies.

About the same time that Riemann’s Dissertation was
being published, Hermann von HEeLmHOLTZ (1821-1894)
was conducting very similar investigations from the point
of view of the general intuition of space, being incited
thereto by his interest in the physiological problem of the
localisation of objects in the field of vision.

- Helmholtz ! starts from the idea of congruence, and, by
assuming certain principles such as that of free mobility of
mgid bodies, and monodromy, i.e. that a body returns
unchanged to its original position after rotation about an
axis, he proves—what is arbitrary in Riemann’s investiga-
tion—that the square of the line-clement is a homogeneous
function of the second degree in the differentials.

That the form of the function which expresses the
distance between two points is limited by the possibility
of the existence of congruent figures in different positions
s shown as follows. Suppose we have five points in space,
4,B,C, D, E. The position of each point is determined by
three coordinates, and connecting each pair of points there
S a certain expression involving the coordinates, which
Corresponds to the distance between the two points. Let

1« Ueber die Thatsachen, die der Geometrie zum Grunde liegen,”
?5313737&{167 Nachrichten, 1868. An abstract of this paper was published
0 1866. )
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us try to construct a figure A'B'("D'E" with exactly th,
same distances between pairs of corresponding points g
the figure ABCDE. A’ may be taken arbitrarily. Thep
B’ must lie on a certain surface, since its coordinates arq
connected by one equation. (" has to satisfy two cond;.
tions, and therefore lies on some curve, and then D’ g
completely determined by its distances from 4’, B" and ("
Similarly £" will be completely determined by its distance
from A’, B' and (", but we cannot now guarantee thgt
the distance D'E’ will be equal to DE. The distance.
function is thus limited by one condition. And with more
than five points a still greater number of conditions musgt
be satisfied.?

It is customary to speak, as Helmholtz does, of the
transformation of a figure into another congruent figure
as a displacement of a single rigid figure from one position
to another. This language often enables us to abbreviate
our statements.

Thus, employing this language, we may argue for the general case
as follows. If there are » points, the figure has 3n degrees of freedon,
and there are }n(n - 1) equations connecting the distances of pairs
of points. But a rigid body has unly 6 degrees of freedom ; therefore
the number of equations determining the distance-function ig
Ly(n-1)-3n+6=1(n-3)(n-4)

But it is necessary to avoid here a dangerous confusion,
Points in space are fixed objects and cannot be conceived
as altering their positions. When we speak of a motion
of a 1igid figure we are thinking of material bodies. The
assumption which Helmholtz makes, which 1s expressed
by the phrase, the “ free mobility of rigid bodies,” is thus

1 This method was employed by J. M. de Tilly, Bruxelles, Mé¢m. Acad.

Roy. (8vo collection), 47 (1893), to find the expression for the distance-
function without using infinitesimals.
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simply an assumption that there is such a thing as absolute
space.

While, psychologicallv, the idea of congruence may be
based on the idea of rigid bodies, if it were really dependent
upon the actual existence of rigid bodies it would have a
very insecure foundation. Not only are the most solid
bodies within our experience elastic and deformable, but
 modern researches in physics have given a high degree of
probability to the conception that all bodies suffer a change
In their dimensions when they are in motion relative to
the aether. As all bodies, including our measuring rods,
suffer equallv in this distortion, however, we can never be
conscious of 1t.

5. Continuous groups of transformations.

Helmholtz’s researches, though of great importance in
the history of the foundations of geometry, lacked the
thoroughness which we would have expected had the author
been a mathematician by profession.

The whole question was considered over again from a
severely mathematical point of view by Sophus LIg!
(1842-1899), who reduced the idea of motions to trans-
formations between systems of coordinates, and congruence
to invariance under such transformations. The underlving
idea is that of a group of transformations.

Suppose we have a set of operations R, S, T, ... such that
(1) the operation R followed by the operation S 1s again
an operation (denoted by the product RS) of the set, and
(2) (RS)T = R(ST), then the set of operations is said to form
agroup. The operation, if it exists, which leaves the operand

LS. Lie, Theorie der Transformationsgruppen, vol. iil. (Leipzig, 1893),

Abt, V. Kap. 20-24 ; and * Uber die Grundlagen der Geometrie,” Leipziger
Berichic, 42 (1890).
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unaltered, is called the identical transformation, and ig
denoted by 1. :

Thus, if R, S, T are the operations of rotation about g
fixed point through 1, 2 and 3 right angles, the operationg
1, R, S, T form a group, and this is a sub-group of the
group consisting of the 8 operations of rotation through

. T
every multiple of i

The transformations which Lie considers are infinitesimal
transformations, and the groups are conlinuous groups,
such as the group of «ll the rotations about a fixed point,
All the transformations which change points into points,
straight lines into straight lines, and planes into planeg
form a continuous group which is called the general pro-
jective group.

The assumption from which Lie starts in his geometrical
investigation is the *‘ axiom of free mobility in the infini-
tesimal ™ : |

“If, at least within a certain region, a point P and a line-
element through P are fixed, continuous motion is still
possible, but if, in addition, a plane-element through P is
fixed, no motion is possible.” ’

Starting then with the group of projective transforma-
tions, he determines the character of the transformations
so that this assumption may be verified, and he proves that
thev form a group which leaves unaltered either a non-ruled
surface of the second degree (real or imaginarv ellipsoid,
hyperboloid of two sheets or elliptic paraboloid), or a plane
and an imaginary conic lving on this plane. This invariant
figure 1s just the Absolute. The motions of space, therefore,
form a sub-group of the general projective group of point-
transformations which leave the Absolute invariant. And
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so, without Helmholtz’s axiom of monodromy, but using
a definite assumption of free mobility, Lie establishes that
the only possible types of metrical geometry are the three
in which the absolute is a real non-ruled quadric (hyperbolic
geometry), an imaginary quadric (elliptic geometry), and

Y
7

a plane with an imaginary conic (euclidean geometry).

6. Assumption of coordinates.

There are several points on which the investigations of
Riemann, Helmholtz and lie admit of criticism. The
outstanding difficulty which strikes one at once lies in the
use of coordinates. How can we define the coordinates of
a point before we have fixed the idea of congruence ? This
question has been settled by an appeal to the famous
procedure of von StaUDT (1798-1867), the founder of
projective geometry. He has shown! how, by means of
repeated application of the quadrilateral-construction for
a harmonic range (see Chap. III. §5), numbers may be
assigned to all the points of a line. This, and other
questions involved, have now been solved by the modern
procedure of Pasch, Hilbert and the Italian school repre-
sented by Pierl. This procedure, which marks a return to
the classical method of Euclid, consists in developing
geometry as a purelv logical system deduced from an
appropriately chosen system of axioms or assumptions,

7. Space-curvature and the fourth dimension.

A misunderstanding. which is especially common among
philosophers. has grown around Riemann’s use of the
term ** curvature.”  Helmholtz, whose philosophical

LG. K. Ch. v, Staudt, Geometriz der Lage, Niirnberg, 1847. and Beitrdge
zur Geometrie der Lage, Nirnberg, 1856-57-60.



200 PHILOSOPHICAL Tvr. 7

writings ! are much better known than his mathematica]
researches, has unfortunately contributed largely to this
error. The use of the term * space-curvature” has led
to the idea that non-euclidean geometry of three dimensions
necessarily implies space of four dimensions, for curvature
of space has no meaning except in relation to a fourth
dimension. But when we assert that space has only three
dimensions, we thereby deny that space has four dimensions,
The geometry of this space of three dimensions, whether
it is euclidean or non-euclidean, follows logically from
certain assumed premises, one of which will certainly be
equivalent to the statement that space has not more than
three dimensions (cf. Chap. II. § 14, footnote). The origin
of the fallacy lies in the failure to recognise that the
geometry on a curved surface is nothing but a representa-
tion of the non-euclidean geometry.

This i1s brought out still more clearly by the fact that,
as non-euclidean geometry, elliptic or hyperbolic, can be
represented on certain curved surfaces in euclidean space,
the converse 1s also true, that euclidean geometry can be
represented on certain curved surfaces in elliptic or hyper-
bolic space ; and, of course, we do not consider the euclidean
plane as being a curved surface.

While, therefore, the conception of non-euclidean space
of three dimensions in no way implies necessarily space-
curvature or a fourth dimension, it is still an interesting
speculation to suppose that we exist really in a space of
four dimensions, but with our experience confined to a
certain curved locus in this space, just as Helmholtz’s
“ two-dimensional beings ”’ were confined to the surface

1 H. v. Helmholtz, * The origin and meaning of geometrical axioms,”
Mind, 1 (1876), 8 (1878); also in Popular Scientific Lectures (London,
1881), vol. ii. =
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of a sphere in space of three dimensions, and acquired ir
this way the idea that their geometry is non-euclidean.

W. K. Clifford ! has gone further than this and imagined
that the phenomena of electricity, etc., might be explained
by periodic variations in the curvature of space. But we
cannot now say that this three-dimensional universe in
which we have our experience is space in the old sense, for
space, as distinct from matter, consists of a changeless set
of terms in changeless relations. There are two alternatives.
We must either conceive that space is really of four dimen-
sions and our universe is an extended sheet of matter
existing in this space, the aether ? if we like; and then,
Just as a plane surface is to our three-dimensional intelli-
gence a pure abstraction, so our whole universe will become
an ideal abstraction existing only in a mind that perceives
space of four dimensions—an argument which has been
brought to the support of Bishop Berkeley ! 3 Or, we must
resist our innate tendencies to separate out space and
bodies as distinct entities, and attempt to build up a
monistic theory of the physical world in terms of a single
set of entities, material points, conceived as altering their
relations with time.# In either case it 1s not space that is
altering its qualities, but matter which is changing its form
or relations with time.

Y T he Common Sense of the Exact Sciences (London, 1885), chap. iv. §19.

2Cf. W. W. Rouse Ball, *“ A hypothesis relating to the nature of the
ether and gravity,” Messenger of Math., 21 (1891).

*See C. H. Hinton, Scientific Romances, First Series, p. 31 (London,
1886). For other four-dimensional theories of physical phenomena
see Hinton, The Fourth Dumension (London, 1904).

1Cf. A. N. Whitehead, “ On mathematical concepts of the material
world,” Phil. Trans., A 205 (1906).
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8. Proof of the consistency of non-euclidean geometry,

The characteristic feature of the second period in the
history of non-euclidean geometry is brought out for the
first time by BerTraMI! (1835-1900), who showed that
Lobachevsky’s geometry is represented upon a surface of
constant curvature. This is historically the first euclidean
representation of non-euclidean geometry, and is of import-
ance in providing a proof of the consistency of the non-
euclidean systems. While the development of hyperbolic
geometry in the hands of Lobachevsky and Bolyai led to
no apparent internal contradiction, a doubt remained that
inconsistencies might yet be discovered if the investigations
were pushed far enough. This doubt was removed by
Beltrami’s concrete representation by means of the pseudo-
sphere, which reduced the consistency of non-euclidean
geometry to depend upon that of euclidean geometry,
- which everyone admits to be self-consistent.

Any concrete representation of non-euclidean geometry
in euclidean space can be applied with the same object.
In fact, the Cayley representation is more suitable for this
purpose, since 1t affords an equally good representation of
three-dimensional geometry. The advantage of Beltrami’s
representation is that distances and angles are truly repre-
sented, and the arbitrariness which may perhaps be felt
in the logarithmic expressions for distances and angles
1s eliminated.

At the present time no absolute test of consistency is

1E. Beltrami, Saggio di interpretazione della geometria non-euclidea,
Naples, 1868. Beltrami also showed that. since the equation of a geodesic
in geodesic coordinates is linear, the surface can be represented on a
plane, geodesics being represented by straight lines, and real points being
represented by points lying within a fixed circle. He thus gave the tran-
sition from the geodesic to the projective representation of Cayley.
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known to exist, and the only test which we can apply is o
construct a concrete representation by means of a body
of propositions whose consistency is universally granted.
In the case of non-euclidean geometry the test which has
just been applied suffices to prove the impossibility of
demonstrating Euclid’s postulate. For, if Euclid’s postu-
late could be mathematically or logically proved, this
would establish an inconsistency in the non-euclidean
systems ; but any such inconsistency would appear again
in the concrete representation. The mathematical truth
of the euclidean and the non-euclidean geometries is equally
strong.

9. Which is the true geometry ?

There being no « priort means of deciding from the
mathematical or logical side which of the three forms of
geometry does in actual fact represent the true relations
of things, three questions arise : |

(1) Can the question of the true geometry be decided
« posteriori, or experimentally ?

(2) Can it be decided on philosophical grounds ?

(3) Isit, after all, a proper question to ask, one to which
an answer can be expected ?

10. Attempts to determine the space-constant by
astronomical measurements.

Let us consider what form of experiment we can contrive
to determine. if possible, the geometrical character of
space. KEssentially it must consist in the measurements
of distances and angles, the sort of triangulation which 1s
employed to determine the figure of the earth, but on a
prodigiously larger scale. If we could measure the angles



