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SUMMARY OF PART IIL

IN this Part, we shall be concerned, first, with the definition and general
logical properties of cardinal numbers (Section A); then with the operations
of addition, multiplication and exponentiation, of which the definitions and
formal laws do not require any restriction to finite numbers (Section B);
then with the theory of finite and infinite, which is rendered somewhat
complicated by the fact that there are two different senses of “finite,” which
cannot (so far as is known) be identified without assuming the multiplicative
axiom. The theory of finite and infinite will be resumed, in connection with
series, In Part V, Section E. .

It is in this Part that the theory of types first becomes practically
relevant. It will be found that contradictions concerning the maximum
cardinal are solved by this theory. We have therefore devoted our first
section in this Part (with the exception of two numbers giving the most
elementary properties of cardinals in general, and of 0 and 1 and 2, re-
spectively) to the application of types to cardinals. Every cardinal is
typically ambiguous, and we confer typical definiteness by the notations of
%63, %64, and %65. It is especially where existence-theorems are concerned
that the theory of types is essential. The chief importance of the propositions
of the present part lies, not only, as throughout the book, in the hypotheses
necessary to secure the conclusions, but also in the typical ambiguity which
can be allowed to the symbols consistently with the truth of the propositions
in all the cases thereby included.



SECTION A.

DEFINITION AND LOGICAL PROPERTIES OF CARDINAL NUMBERS.

Summary of Section A.

The Cardinal Number of a class a, which we will denote by “Nc‘a,” is
defined as the class of all classes similar to a, 7e. as ,§(B sma). This
definition is due to Frege, and was first published in his Grundlagen der
Arithmetik* ; its symbolic expression and use are to be found in his
Grundgesetze der Arithmetik+. The chief merits of this definition are
(1) that the formal properties which we expect cardinal numbers to have
result from it; (2) that unless we adopt this definition or some more
complicated and practically equivalent definition, it is necessary to regard
the cardinal number of a class as an indefinable. Hence the above definition
avoids a useless indefinable with its attendant primitive propositions.

It will be observed that, if # is any object, 1 is not the cardinal number
of #, but that of t‘. This obviates a confusion which otherwise is liable
to arise in dealing with classes. Suppose we have a class a consisting
of many terms; we say, nevertheless, that it is one class. Thus it seems to
be at once one and many. But in fact it is a that is many, and ¢‘a that is
one. In regard to zero, the analogous point is still clearer. Suppose we say
“there are no Kings of France.” This is equivalent to “ the class of Kings of
France has no members,” or, in our language, “the class of Kings of France is
a member of the class 0.” It is obvious that we cannot say “the King of
France is a member of the class 0,” because there is no King of France.
Thus in the case of 0 and 1, as more evidently in all other cases, a cardinal
number appertains to a class, not to the members of the class.

For the purposes of formal definition, we subject the formula
Ne‘a= (8sma)
to some simplification. It will be seen that, according to this formula, “ Nc¢”
is a relation, namely the relation of a cardinal number to any class of which
it is the number. Thus for example 1 has to t‘c the relation Nc; so has
* Breslau, 1884. Cf. especially pp. 79, 80.

+ Jena, Vol. 1. 1893, Vol. 11. 1903. Cf. Vol. 1. §§ 40—42, pp. 57, 58. The grounds in favour
of this definition will be found at length in Principles of Mathematics, Part II.
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._)
2 to t‘zv iy, provided x+y. The relation Ne¢ is, in fact, the relation sm;

- A

for sm‘a =B (Bsma). Hence for formal purposes of definition we put
__)
Ne=sm Df.

The class of cardinal numbers is the class of objects which are the cardinal
numbers of something or other, i.e. of objects which, for some a, are equal to
Nca.  We call the class of cardinal numbers NC; thus we have

NC =4 {(ga) . u = Nc‘a}.
For purposes of formal definition, we replace this by the simpler formula

NC=D*Ne Df.

In the present section, we shall be concerned with what we may call the
purely logical properties of cardinal numbers, namely those which do not
depend upon the arithmetical operations of addition, multiplication and
exponentiation, nor upon the distinction of finite and infinite*, The chief
point to be dealt with, as regards both importance and difficulty, is the
relation of a cardinal number in one type to the same or an associated
cardinal number in another type. When a symbol is ambiguous as to type,
we will call it typically ambiguous; when, either always or in a given context,
it i1s unambiguous as to type, we will call it typically definite. Now the
symbol “sm ” is typically ambiguous; the only limitation on its type is that
its domain and converse domain must both consist of classes. When we
have asm 3, a and B need not be of the same type, in fact, in any type of
classes, there are classes similar to some of the classes of any other type of
classes. For example, we have t‘csmt‘y, whatever types # and y may
belong to. This ambiguity of “sm” is derived from that of 1— 1, which in
turn is derived from that of 1. We denote (cf. #65°01) by “1,” all the unit
classes which are of the same type as a. Then (according to the definition
%70:01) 1,— 15 will be the class of those one-one relations whose domain is
of the same type as a and whose converse domain is of the same type as 3.
Thus “1,— 15" is typically definite as soon as a and B are given. Suppose
now, instead of having merely ¢ sm 8, we have

(qR).Rel,—>13.D'R=ry.d‘R=3;
then we know not only that ysm 8, but also that  belongs to the same type
as «, and 8 belongs to the same type as 8. When the ambiguous symbol
“sm” is rendered typically definite by having its domain defined as being of
the same type as a, and its converse domain defined as being of the same
type as B, we write it “sm, g),” because generally, in accordance with %651,
if B is a typically ambiguous relation, we write Ry for the typically

* The definitions of the arithmetical operations, and of finite and infinite, are really just as
purely logical as what precedes them ; but if we are to draw a line between logic and arithmetic
somewhere, the arithmetical operations seem the natural point at which to place the beginning
of arithmetic.
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definite relation that results when the domain of R is to consist of terms of
the same type as @, and the converse domain is to consist of terms of the
same type as 8. Thus we have

ysmg g o.=.(R). Rel,—>15.y=D‘R.5=U‘R.
Here everything is typically definite if a and B (or their types) are given.

Passing now to the relation “N¢,” it will be seen that it shares the typical
ambiguity of “sm.” In order to render it typically definite, we must derive
it from a typically definite “sm.” So long as nothing is added to give
typical definiteness, “ Nefy” will mean all the classes belonging to some
one (unspecified) type and similar to . If ais a member of the type to
which these classes are to belong, then Nc‘y is contained in the type of a.
For this case, it is convenient to introduce the following two notations,
already defined in %65. When a typically ambiguous relation R is to be
rendered typically definite as to its domain only, by deciding that every
member of the domain is to be contained in the type of a, we write “R (a)”
in place of R. When we further wish to determine R as having members of
the converse domain contained in the type of 8, we write “ R (a,3)” in place
of R; and when we wish members of the converse domain to be members of
the type of B, we write “ R (ag)” in place of B. Thus

sg'{Bup} = {sg R} (ap)

_—)
(cf. ¥65°2), and in particular, since Nc = sm,

Ne (ag) =sg‘sm, g).
Thus “ Nec (ag)‘y” is only significant when « is of the same type as 3, and

then it means “classes of the same type as « and similar to ¢ (which is of the
same type as 3).”

- “Ne (2)‘y” will mean “classes of the same type as a and similar to .”
As soon as the types of a and ¢ are known, this is a typically definite symbol,
being in fact equal to Nc(a,)%y. Hence so long as we only wish to consider
“ Nec‘y,” typical definiteness is secured by writing “ Ne («)” in place of “Ne.”

When we come to the consideration of NC, “Nec(a)” is no longer a
sufficient determination, although it suffices to determine the type. Suppose
we- put

NCA(a)=D*Nec(ag) Df;

we have also, in virtue of the definitions in %65,

v NC (a)=NC n t**a=D*Nc (a).

Thus NC(a) is definite as to type, but is the domain of a relation whose
converse domain is ambiguous as to type; and it will appear that there are
some propositions about NC (a) whose truth or falsehood depends upon the
determination chosen for the converse domain of Nc(a). Hence if we
wish to have a symbol which is completely definite, we must write “NC# (a).”
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This point is important in connection with the contradictions as to the
maximum cardinal. The following remarks will illustrate it further.

Cantor has shown that, if 8 is any class, no class contained in 3 is similar
to C1‘8. Hence in particular if B is a type, no class contained in B8 is similar
to Cl‘B, which is the next type above 8. Consequently, if 8=a v —a, where
a is any class, we have

~(qy).yCav—a.ysmCl(av—a).
Now (cf. %63) we put
tfa=av—a Df
and we have t‘a=Cl(a v — a). Thus we find
~(qy) -y Cty‘a. ysmtia.

Hence Ne (aa)ta= A.
That is to say, no class of the same type as a has as many members as t‘a
has. Hence also

A e NCt* (a).
But v Ctfa.D.yeNc(a,)y.D.q! Ne(a)y,
and “ Ne (aa)%y ” is only significant when y C#,‘a; hence

pweNCe(a). .. p

and A ~eNCe(a)

Now the notation “ NC (a)” will apply with equal justice to NC*(a) or to
NCt«(a); but we have just seen that in the first case we shall have
A~eNC(a), and in the second we shall have AeNC(a). Consequently
“NC(a)” has not sufficient definiteness to prevent practically important
differences between the various determinations of which it is capable.

A converse procedure to the above yields similar results. Let a be a
class of classes; then s‘a is of lower type than a. Let us consider NC* (a).
In accordance with %63, we write ,‘a for the type containing s‘a, .e. for
s‘au —s‘a. Then the greatest number in the class NC#* (a) will be Nec ()% ‘a;
but neither this nor any lesser member of the class will be equal to
Nec (a)t,‘a, because, as before,

~(qy) .-y Chia.ysm t,fa.
Hence Nc (a)*t,‘a, which is a member of NC¢(a), is not a member of NC¥(a);

but NC(a) and NC*e(a) have an equal right to be called NC(a). Hence
again “NC (a) ” is a symbol not sufficiently definite for many of our purposes.

The solution of the paradox concerning the maximum cardinal is evident
in view of what has been said. This paradox is as follows: It results from
a theorem of Cantor’s that there is no maximum cardinal, since, for all values

of a,
Nec‘Cléa > Ncfa.
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But at first sight it would seem that the class which contains everything
must be the greatest possible class, and must therefore contain the greatest
possible number of terms. We have seen, however, that a class a must
always be contained within some one type; hence all that is proved is that
there are greater classes in the next type, which is that of Cl‘a. Since there
is always a next higher type, we thus have a maximum cardinal in each type,
without having any absolutely maximum cardinal. The maximum cardinal
in the type of a is
Ne(a)4(av —a).

But if we take the corresponding cardinal in the next type, v.e.
Ne (Cla)(a v —a),

this is not as great as Nc(Cl‘a)*Cl{(av —a), and is therefore mnot the
maximum cardinal of its type. This gives the complete solution of the
paradox.

For most purposes, what we wish to know in order to have a sufficient
amount of typical definiteness is not the absolute types of a and 3, as above,
but merely what we may call their relative types. Thus, for example, a and
B may be of the same type; in that case, Nc(ag) and NCF (a) are respectively
equal to Ne(a,) and NC(a). We will call cardinals which, for some a, are
members of the class NC¢ (a), homogeneous cardinals, because the “sm” from
which they are derived is a homogeneous relation. We shall denote the
homogeneous cardinal of a by “Nyc‘a” and we shall denote the class of
homogeneous cardinals (in an uuspecified type) by “N,C”; thus we put

Nyc‘a= Nclant‘a Df,
N,C=D*Nyc Df.

Almost all the properties of N C are the same in different types. When
further typical definiteness is required, it can be secured by writing Nc (a),
N,C(a) in place of N, N,C. TFor although Nc(a) and NC (a) were not
wholly definite, Nyc (¢) and N,C () are wholly definite. Apart from the fact
of being of different types, the only property in which N,C (a) and N,C(B)
differ when a and B are of different types is in regard to the magnitude of
the cardinals belonging to them. Thus suppose the whole universe consisted
(as monists aver) of a single individual. Let us call the type of this
individual “Indiv.” Then N,C (Indiv) will consist of 0 and 1, <.e.

N,C (Indiv) = ¢‘0 v ¢¢1.

But in the next higher type, there will be two members, namely A and Indiv.
Thus
N,C(#Indiv) =10 v 11 v (2.

Similarly N,C (#¢“Indiv) = 1O v 11 v 12 U ‘3 U 14,



SECTION A] LOGICAL PROPERTIES OF CARDINAL NUMBERS 9

the members of ¢tIndiv being A n ¢‘Indiv, ¢‘A, t‘Indiv, tA v ¢‘Indiv; and
so on. (The greatest cardinal in any except the lowest type is always a
power of 2.)

The maximnm of N,C(a) is Nyc“t,‘a; but apart from this difference of
maximum and its consequences, N,C (a) and N,C (8) do not differ in any
important properties. Hence for most purposes N,C and N have as much
typical definiteness as is necessary.

Among cardinals which are not homogeneous we shall consider three
kinds. The first of these we shall call ascending cardinals. A cardinal
NCE& (a) is called an ascending cardinal if the type of B is t‘a or t¢‘a or t‘t‘t‘a
or etc. We write t*a for ¢t‘t‘a, t*a for tt‘t‘a, and so on. We put

Nicfa= Nc‘antt‘a Df
N2cfa=Ncan t‘t*a Df
Nicta= Nc‘a n t‘t**a  Df and so on,

and NiC=D*Nte Df
Nz2C = D*Nzc Df
N3C =D*Nsc Df and so on.
We then have obviously
NiC (ta) CN,C (ta).
We also have (by what was said earlier)
Ne‘t‘a~ e NIC (ta).
Hence i ! N,C (ta) — N'C (t‘a).

The members of N,C(t‘a) — N'C(t‘a) will be all cardinals which exceed
Nec‘t,‘a but do not exceed Ne‘tfa.

Let us recur in illustration to our previous hypothesis of the universe
consisting of a single individual. Then Nl¢c‘Indiv will consist of those
classes which are similar to “ Indiv” but of the next higher type. These are
t‘A and “‘Indiv. In our case we had Nc‘Indiv=1. This leads to

Nic‘Indiv=1.N2c‘Indiv =1 ete.
or, introducing typical definiteness,
NiefIndiv =1 (¢“Indiv) . N2%c‘Indiv =1 (¢*Indiv) etc.
We have then 1 (¢‘Indiv) e N*C (¢¢‘Indiv). Also
1 (¢‘Indiv) e N,C (¢“¢“Indiv).
And in the case supposed, 1 (¢*Indiv) is the maximum of N'C (¢¢“Indiv), but
2 (¢‘Indiv) e N,C (t¢“Indiv). Hence
N,C (t“¢Indiv) — N'C (¢¢“Indiv) = ¢*2.
Generalizing, we see that N'C (t‘a) consists of the same numbers as N,C (a)

each raised one degree in type. Similar propositions hold of N2C (t*w),
N:C (#5a) ete.
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It is often useful to have a notation for what we may call “the same
cardinal in another type.” Suppose w is a typically definite cardinal ; then
we will denote by u® the same cardinal in the next type, .e.

sméuntu.
Note that, if x4 is a cardinal, sm*“u n u=pu; and whether p is a typically
definite cardinal or not,
sm““u nta
is a cardinal in a definite type. If u is typically definite, then sm“u n t‘a is
wholly definite; if u is typically ambiguous, sm*u n t‘a has the same kind
of indefiniteness as belongs to NC (a). The most important case 1s when u
is typically definite and « has an assigned relation of type to u. We then
put, as observed above,
p=sm“unt‘y Df
p® =sm“u nt*u  Df ete.
If wis an N,C, u® is an N'C and p® is an N2C and so on. NC(t‘a) will
consist of all numbers which are of the form u® for some pu which is a
member of N,C (a); e
NC (t‘a)=9 {(gp) . p e NC(2) . v=pn?}].

The second kind of non-homogeneous cardinals to be considered is called
the class of “descending cardinals.” These are such as go into a lower type;
v.e. Nc (a)‘B is a descending cardinal if a is of a lower type than 8. We put

Ncta= Nc‘an t4,a Df
N.cfa= Ncfan t¢,a Df ete.

N,C=D*Nc Df
N,C=D‘Ne ~ Df ete.

po =sm“unty Df
ke =sm“untu Df ete

We have obviously N,cfa= N,c“t*“a.
Hence N,C (a) CN,C ().
Also yeNcd.D.Nicd =Ny,
whence g ! Nied.D.Niefde N,C,
whence N,.C—-t‘ACN,C.

Since also A ~ e N,C(a), we find

. N()C = NIC - L‘l\,
this proposition not requiring any further typical definiteness, since it holds
however such definiteness may be introduced, remembering that such definite-

ness is necessarily so introduced as to secure significance. Further, in virtue
of the fact that no class contained in {,°a is similar to t‘a, we have

A e N,C (a).
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Consequently N,C=N,Cv t‘A.
We can prove in just the same way
N,C=N,Cu ‘A.
Hence N,C=N,C,
and this result can obviously be extended to all descending cardinals.

The third kind of non-homogeneous cardinals to be cousidered may be
called “relational cardinals.” They are those applicable to classes of
relations having a given relation of type to a given class. Consider for
example Ncey,e.  (We shall take this as the definition of the product of the
numbers of the members of «.) Suppose now that « consists of a single term:
we want to be able to say

Ncfean = NC:Z‘K.
We have in this case, if x = (‘q,

ea‘e=| a‘“a,

and we know that | a‘“asma. But if we put simply

Nc¢ | af“a= Nc‘a,
our proposition, though not mistaken, requires care in interpretation. Just
as we put t““ae N'c‘a, so we want a notation giving typical definiteness to
the proposition | a‘“ae Nc‘a. This is provided as follows.

Using the notation of %64, put

Nucéa= Ncfa n t,,‘a Df
N,'cfa= Necfa n ¥t a Df ete.
NC=DNye Df
NJC=D*N,ec Df ete.
Moo =S “u n it 4 u  Df ete.
Then we have, for example,
la“a Ctla, ve. | a““aettia
Hence | a““a e Njc‘a, where Njc‘a= Nc‘an ta.
Similarly zet‘a.D. | a“ae Nyca
Thus the above definitions give us what is required.

In order to complete our notation for types, we should need to be able to

express the type of the domain or converse domain of R, or of any relation

whose domain and converse domain have respectively given relations of type
to the domain and converse domain of R. Thus we might put

dR=1tD‘R Df
b R=t, AR Df
(“b” appears here as “d” written backwards)
dw‘R=td, R T b,R) Df
=t‘R
dm R = t‘(t"d,*R 1 t*b,*R) Df and so on.
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This notation would enable us to deal with descending relational cardinals.
But it is not required in the present work, and is therefore not introduced
among the numbered propositions.

When a typically ambiguous symbol, such as “sm’ or “Ne,” occurs more
ypically g Y ; )

than once in a given context, it must not be assumed, unless required by the

conditions of significance, that it is to receive the same typical determination

in each case. Thus eg. we shall write “asmB.D.B8sma,” although, if

a and B are of different types, the two symbols “sm” must receive different

typical determinations.

Formulae which are typically ambiguous, or only partially definite as to
type, must not be admitted unless every significant interpretation is true.
Thus for example we may admit

“k.aeNca”

because here “Nc¢” must mean “Nc (a,),” so that the only ambiguity remaining
1s as to the type of «, and the formula holds whatever type a may belong to,
provided “Ncfa” is significant, i.e. provided a is a class. But we must not,
from “aeNec‘a,” allow ourselves to infer
“r7 ! Nefa”
For here the conditions of significance no longer demand that “Nc¢” should
mean “Ne(a,)”: it might just as well mean “Ne(8,).” And as we saw, if
B is a lower type than a, and « is sufficiently large of its type, we may have
Ne (B.)fa= A,
so that “f ! Nc‘@” is not admissible without qualification. Nevertheless, as
we shall see in %100, there are a certain number of propositions to be made
about a wholly ambiguous Ne¢ or NC.

2»



#100. DEFINITION AND ELEMENTARY PROPERTIES
OF CARDINAL NUMBERS.
Summary of %100.

In this number we shall be concerned only with such immediate
consequences of the definition of cardinal numbers as do not require typical
definiteness, beyond what the inherent conditions of significance may bestow.
We introduce here the fundamental definitions:

—_)
%100:01. Nc =sm Df
%10002. NC=D‘Nc Df

The definition “Nc¢” 1s required chiefly for the sake of the descriptive
function Nc¢‘a. We have

#1001, F.Nc‘a=/3(Bsma)= é (asm B)

This may be stated in various equivalent forms, which are given at the
beginning of this number (%¥100'1—16). After a few propositions on Nc as
a relation, we proceed to the elementary properties of Nc‘a. We have

%1003. F.aeNc‘a
%¥10031. F:aeNc‘B.=.8eNca.=.asmpf
%100:321. F:asmB.D.Nc‘a=Nc‘B
%10033. F:qg!Nc‘an Nc‘B.D.asmp
We proceed next to the elementary properties of NC. We have
%1004. F:peNC.:=.(ga).p= Nca
%10042. F:p,veNC.qlpunv.d.p=v
*10045. F:ueNC.aep.d.Nca=pu
#%10051. F:pueNC.aep.d.sm“u=Nca
Observe that when we have such a hypothesis as “u e NC,” the u, though
it may be of any type, must be of some type; hence the u cannot have the

typical ambiguity which belongs to Nc‘a. If we put u=Nc‘a, this will hold
only in the type of u; but “sm*u” is a typically ambiguous symbol, which
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will represent in any type the “same” number as u. Thus “sm“u= Nc‘a”
is an equation which is applicable to all possible typical determinations of
“sm” and “Nec.”

%10052. F:peNC.qlp.d.sm“ueNC

The hypothesis 7 ! u is unnecessary, but we cannot prove this till later
(%102).

We end the number with some propositions (¥100:6—64) stating that
various classes (such as t““a), which have already been proved to be similar
to a, have Nc‘a members,

-
%10001. Nc =sm Df

¥10002. NC=D‘Nc Df
¥1001. F.Nca=B(Bsma)=L(asmB) [*3213.%73:31.(*10001)]
¥10011. F.Nca=R{(gR). Rel—>1.D‘R=a.A‘R=8] [¥10071.%731]
¥10012. F.Nc‘a=B((gR). Rel—1.aCDR. = Ral
[¥100°1 . ¥7311]
«— «—
#%100'13. F.Nca=U“(1>1nD%=D“(1—>1nT)

Dem.
F. 10011 . %336 . SF.Nca=B{(gR). Rel—1.ReDa. AR =]
[%22:33.%37°6] — (1 - 1 n D) (1)
F. %1001 . #7831 . #3361 .3 F . Nc‘a= 3 {(gR). Re 1 — 1. Re L. DR = B
[¥22-33.%37°6] —D¥(1 > 1 n 0‘) 2)
F.(1).(2).9F.Prop

¥10014. F.Nc‘a=RB{(R).aCAR. Rl acl—1.8= R
[¥7315 . %100-1]

x10015. F.Nc‘a=p4 {(gR): E!! R“a:
wyea. Rio=RY .,z y.x=y: 8= R“a}
Dem.
Fox74:111.0
Fi.EN Rz, yea. Rio=RY ., . a=y:B=R:=;
Rlael—Cls.aCd‘R.Rlacl—>1,.8=R (1)
F.(1).%471.%100:14, D F, Prop

¥10016. F.Nc‘a=B{(@R):. 2 yea.dy,: Ro=RY.=.c=y:. B= R
Dem.

F.%71:59.D

Fia,yea.d, i Re=Ry.=.2=y:..=.R[ael—>1.aCU‘R 1)

F.(1).%10014.2F. Prop
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¥1002. F.E!Nca [%32:12.(x100:01)]
¥10021. F.d*Ne=Cls

Dem.
F.%37°76 . (%100:01). D F.d*Nc CCls 1)

F.%33431.%1002. DF.ClsCdNe (2)
F.(1).(2).2F.Prop

%¥10022. F.Ncel—>Cls [¥7212.(%10001)]

%100 3. F.aeNca [%73:3.%1001]

Note that it is fallacious to infer 5! Nc‘a, for reasons explained in the
introduction to the present section.
%10031. F:aeNc‘B.=.BeNca.=.asmB [*32718.%7331.(x¥10001)]
%10032. F:aeNc‘B.BeNcy.D.aeNcy  [%10031.%73:32]

%100321. F:asmB.D.Nca= Nc‘B

Dem.
F.x7337.OF:0Hp.D:ysma.=,.ysmpB:

[%100°1] D: Ncfa=Nc‘B:. D F. Prop
Note that Nc‘a=Nc‘/B.D.asm B is not always true. We might be
tempted to prove it as follows:
F.%100'1.DF: Nc‘a=Nc‘B. =
[%10-1] Jd:asma.=.asmp:
[%733] JD:asmpf
But the use of %101 here is only legitimate when the “sin” concerned is

a homogeneous relation. If Nc‘a, Nc‘B are descending cardinals, we may
have Ncfa= A =Nc¢‘B without baving asm 3.

%100:33. F:q!Nc‘anNc‘/8.D.asmpfB

rysma.=,.ysmpB:

Dem.
F.#%1001.DF:Hp.D.(qy).ysma.ysmp3.
[%73:31] d.(qy).asmy.ysmpB,
[%73:32] D.asmB:IF. Prop

Note that we do not always have
asmB.D.7q! Ncan Ne‘B.
For if the Nc concerned is a descending Nc, and a and B are sufficiently
great, Ncfa and Nc‘8 may both be A. For example, we have
' Cl{(a v — a) sm Cl{(a v —a).
But Ne (2)‘Clé(a v —a) = A, so that
~q ! Ne (a)‘Clé{(a v —a) a Nc (a)Cl(a v —a).
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Thus “asmB.J.q!Nc‘an Nc‘8” is not always true when it is
significant.

%10034. F:q!Nc‘anNc‘B.D.Nc‘a=Nc‘8 [%100:33:321]

%10035. F:g!Nca.v.qg!Nc‘8:D:
Ncefa=Nc‘B.=.aeNc‘B.=.8eNcla.=.asm B

Dem.
F.%22'5. JF:Hp.D:Nca=Nc‘B.D.5! Nc‘an Nc‘3.
[%100-33] Jd.asmf (1)
F.(1).%100321.2OF:.Hp.J: Ncfa=Nc‘B.=.asmf3 (2)

F.(2).%10031. DF.Prop
Thus the only case in which the implications in %100°321:33'34 cannot be
turned into equivalences is the case in which Nc‘a and NcB are both A.

¥10036. F:BeNcfa.Dimpla.=.q!8 [%100-31.%7336]
%1004. F:peNC.=.(go).p=Nca [#377879.(x100:0201)]

%10041. F.Ncae NC [¥100°4-2 . %14-204]

%10042. F:u,veNC.qlunv.d.u=vp
Dem.
F.%1004.DF:Hp.J.(ga,B).u=Nc‘a.v=Nc‘B.5q ! Nc‘an Nc3.
[%100°34] J.(Ha, B) . w=Nc‘a.v=Nc‘B.Nca= Nc‘3.
[%14:15] D.u=v:DF.Prop

%10043. F.NCeCls*excl [#10042.%84'11]

%10044. F: ueNC.g!Nc‘a.d:aeup.=.Nca=p
Dem.
F.%1003.DF:Nc‘a=u.D.aep (1)
F.%x1024.OF:ueNC.q! Nc‘a.aep.D.
weNC.qtu.q! Nea.aep.

[%1004] O.(gB)-u=Nc‘B.q!Nc‘B.q ! Ne‘a.ae Ne3.
[#¥100:35] D .(HB).u=Nc‘B.Nca=Nc‘S.
[¥14:15] O.Ncla=p (2)
Fo(1).(2).2F. Prop

%10045. F:peNC.aep.d.Nca=p [%1004:31:321]

%¥1005. F:pueNC.a,Bep.d.asmpB

Dem.
F.%1004.23F:Hp.D.(qy). = Ncy.a BeNchy.

[%100-31] J.(qy).-asmey.Bsmey,
[%73:31-32] D.asmB:J}F. Prop
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%10051. F:peNC.aep.Dd.sm“u= Nca

Dem.
F.%1005.Fact.OF:. Hp.D:Bep.ysmB.Dd.asmB.ysmp.
[%73:31:32] D.asmy.
[%100:31] D.yeNca (1)
F.(1).%101121-23.%371.DF: Hp.D.sm*u C Nc‘a (2)
F.%100°31. JDF:uHp.J:yeNca.d.ysma.aeu.
[%371] Dd.yesm“u  (3)
F.(2).(3).9F.Prop

%100511. F:q! Nc‘B.D.sm“Ne‘3=Nc‘B3
Here the last “Nc‘B” may be of a different type from the others: the
proposition holds however its type is determined.

Dem.
F.%100:51'41.DF:aeNc‘B.D.sm*“Nc‘B= Nca

[%100:31°321] — Ne‘B (1)
F.(1).%101123.DF. Prop
%10052. F:peNC.q!lp.D.sm“pue NC [%100:514]
This proposition still holds when w= A, but the proof is more difficult,
since it depends upon the proof that every null-class of classes is an N(,

which in turn depends upon the proof that Cl‘a is not similar to a or to any
class contained in a.

#100521. F:peNC.qg!sm“u.D.sm“sm“u=
q p p=p

Dem.
F.%3729 . Transp. D F:.Hp.D:qptpu:
[%100°52] D:sm“ueNC:
[%100-51.Hp] Driyesm“u. . sm“sm“u = Ncy (1)
F.*%371.Fact. DJF:Hp.yesm“u.d.(qga).aep.ueNC.ysma.
[%100-45'321] D. (ga). Nefa = p . Nefy = Nea.
[%13:17] J.Ncéy=p (2)
F.(1).(2). ODF:iHp.yesm“u.d.sm“sm“u=p (3)

F.(3).%1011-2335. D F. Prop

*¥10063. Figplpu.q'v.DipeNC.ov=sm“u.=.ve NC,pu=sm
Dem.

F.%10052. OF:Hp.D:peNC.rv=sm“u.D.reNC (1)

F.*100'521.D|-:.Hp.D:p,eNC.v=sm“,u,.3.y,=sm“v (2)

F.(1).2). QF:Hp.D:peNC.v=sm“u.D.veNC.u=smp 3)
¢ v,

l‘.(3).(3)/ﬁ.3|-.Prop

R.&W. II, 2
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¥1006. F.iaeNca [%73'41 .%10031]
¥10061. F.B{(@y).yea.B=1twviy}eNeca [¥7327.%54:21.%10031]
%10062. F.z | “aeNca [#73°61 . %100°31]
%100621. F. | 2“a e Ne‘a [¥73'611 . ¥100:31]
¥10063. F.es“tae Nca [%83'41 . %100:31]
¥100631. F.D“c,“t’a e Ne‘a [%837 . %100°6]
%10064. F:xeClstexcl.D.D%esc C Netk

Dem.

F.%84'3.%8014.0F:Hp.Reeas.D. Rel—>1.x=UR.
[%732.%100°31] J.DReNc‘k: Dt . Prop



#101. ON 0 AND 1 AND 2

Summary of %101.

In the present number, we have to show that 0 and 1 and 2 as previously
defined are cardinal numbers in the sense defined in %100, and to add a few
elementary propositions to those already given concerning them. We prove
(%101-12-241) that 0 and 1 are not null, which cannot be proved, with our
axioms, for any other cardinal, except (in the case of finite cardinals) when
the type is specified as a sufficiently high one. Thus we prove (¥101'42-43)
that 2q, and 2g, exist; this follows from A%V and A+V. We prove
(%101-22:34) that 0 and 1 and 2 are all ditferent from cach other. We prove
(%¥101°15-28) that sm*“0=0 and sm“1l=1, but we cannot prove sm*2=2
unless we assume the existence of at least two individuals, or define the first
2in “sm“2=2" as a 2 of some type other than 2;,4,, where “ Indiv " stands
for the type of individuals. ‘

It should be observed that, since 0 and 1 and 2 are typically ambiguous,
their properties are analogous to those of “Nc‘a” rather than to those of g,
where uwe NC. For example, we have

%100:511. F:q! Nc‘B.D.sm“Ne‘B=Nc‘B

but we shall not have u e NC.q ! .. smu=pu unless the “sm ” concerned

is homogeneous, since in other cases the symbols do not express a significant

proposition. But in %100°511 we may substitute 0 or 1 or 2, and the

proposition remains significant and true. In fact we have (%¥101'1:2:31)
F.0=Nec‘A.1=Nc“z.2=Nc‘(t“ts v 1°A),

where 0 and 1 and 2 have an ambiguity corresponding to that of “Ne.”

*%101'1.  F.0=Nec‘A [*73'48 . %100°1]
¥101'11. F.0eNC [%101°1 . %100-4]
¥10112. .10 [%51'161 . (%54°01)]
*101'13. F.g!0nCl'a. Ae0nCla [¥51:16.%603]
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%101'14. F:Nc‘y=0.=.y=A

Dem.
F.%101°1112.DF: Nefy=0.=.Nec‘y=Nc‘A.q ! Nc‘A.
[%13:194] =.Ncy=Nc‘A.qg! Ne‘A. 5! Nefy.
[%¥100-35] =.yeNc‘A.q! Nc‘A.nqp! Ney.
[¥1011.%54:102] =.y=A.q! Nc‘A.q! Nety.
[%101°1°12.%13-194] =.y=A:DF.Prop
%101-16. F.sm‘0=0
Dem.
F.#371.DF:yesm“0.=.(ga).ae0.ysma.
[%54°102] =.ysmA.
[%73-48] =.ye0:DF. Prop
%101'16. F:.peNC—1t0.D:aep.2..-g!a
Dem.
F.%10045. DF:peNC.Aep.d.p=Nc‘A
[%1011] =0 (1)
F.(Q).Transp. D F:.ue NC—10.D: Avep:
[%24-63] Didepm.dg.qaz:.dF.Prop

%101'17. F:AeNc‘a.=.Ncfa=0.=.Nc‘a=Nc‘A.=.a=A
* Dem.

F.%100:31'321 . D F: A e Nca. D. Nca = Ne‘A .

[%101-1] J.Ncéa=0 (1)
F.%101'13. DF:Ncfa=0.D.AeNca (2)
F.o(1).(2). DF:AeNca.=.Nca=0. (3)
[%101°1] =.Nc‘a=Nc‘A. (4)
[¥101-14] —.a=A (5)

Fo@3).(4).(5).2F. Prop
%101'2. F.1=Nc% s [%73'45.%1001]
%101-21. F.1eNC [%101-2 . %100°4]
%10122. F.140

Dem.
F.%5221.%101'13.DF. A~el.AcO.
[%13:14] O+.140
%10123. F.1n0=A
Dem.

F.x5221. Dl:ael.D.atA.
[%54:102] Dd.a~el 1)
Fo(1).%24:39.JF . Prop



