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we can only legitimately assert “ any value ” if all values are true; for other-
wise, since the value of the variable remains to be determined, it might be so
determined as to give a false proposition. Thus in the above instance, since
we have

Foe=z

we may infer Fo(z)oz=a.

And generally, given an assertion containing a real variable #, we may trans-
form the real variable into an apparent one by placing the « in brackets
at the beginning, followed by as many dots as there are after the assertion-
sign.

When we assert something containing a real variable, we cannot strictly
be said to be asserting a proposition, for we only obtain a definite proposition
by assigning a value to the variable, and then our assertion only applies to
one definite case, so that it has not at all the same force as before. When
what we assert contains a real variable, we are asserting a wholly undeter-
mined one of all the propositions that result from giving various values to
the variable. It will be convenient to speak of such assertions as asserting @
propositional function. The ordinary formulae of mathematics contain such
assertions; for example

“sin’z +cos’z =1"
does not assert this or that particular case of the formula, nor does it assert
that the formula holds for all possible values of #, though it is equivalent to
this latter assertion; it simply asserts that the formula holds, leaving
wholly undetermined; and it is able to do this legitimately, because, however
# may be determined, a true proposition results.

Although an assertion containing a real variable does not, in strictness,
assert a proposition, yet it will be spoken of as asserting a proposition except
when the nature of the ambiguous assertion involved is under discussion.

Definition and real variables. When the definiens contains one or more
real variables, the definiendum must also contain them. For in this case we
have a function of the real variables, and the definiendum must have the same
meaning as the definiens for all values of these variables, which requires that
the symbol which is the definiendum should contain the letters representing
the real variables. This rule is not always observed by mathematicians, and
its infringement has sometimes caused important confusions of thought,
notably in geometry and the philosophy of space.

In the definitions given above of “p.¢” and “p D ¢” and “p=g,” p and ¢
are real variables, and therefore appear on both sides of the definition. In
the definition of “~ {(z) . ¢z} ” only the function considered, namely ¢2, is a real
variable ; thus so far as concerns the rule in question, # need not appear on

the left. But when a real variable is a function, it is necessary to indicate
2—2
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how the argument is to be supplied, and therefore there are objections to
omitting an apparent variable where (as in the case before us) this is the
argument to the function which is the real variable. This appears more
plainly if, instead of a general function ¢2, we take some particular function,
say “Z=a,” and consider the definition of ~{(#).z=a}. Our definition
gives ‘
~{@).z=a}.=.(gz) . ~(@=a) Df.

But if we had adopted a notation in which the ambiguous value “z=a,”
containing the apparent variable z, did not occur in the definiendum, we
should have had to construct a notation employing the function itself,
namely “Z=a.” This does not involve an apparent variable, but would be
clumsy in practice. In fact we have found it convenient and possible—except
in the explanatory portions—to keep the explicit use of symbols of the type
“¢2,” either as constants [e.g. # = a] or as real variables, almost entirely out
of this work.

Propositions connecting real and apparent variables. The most important
propositions connecting real and apparent variables are the following:

(1) “When a propositional function can be asserted, so can the propo-
sition that all values of the function are true.” More briefly, if less exactly,
“ what holds of any, however chosen, holds of all.” This translates itself into
the rule that when a real variable occurs in an assertion, we may turn it into
an apparent variable by putting the letter representing it in brackets
immediately after the assertion-sign.

(2) “What holds of all, holds of any,” z.e.
Fi(z). ¢z .D. dy.

This states “if ¢z is always true, then ¢y is true.”

(8) “If ¢y is true, then ¢z is sometimes true,” s.e.

Fidy.d. (qo) . ¢pa.

An asserted proposition of the form “(gx).¢z” expresses an “existence-
theorem,” namely “there exists an # for which ¢z is true.” The above pro-
position gives what is in practice the only way of proving existence-theorems:
we always have to find some particular y for which ¢y holds, and thence to
infer “(gx).¢x.” If we were to assume what is called the multiplicative
axiom, or the equivalent axiom enunciated by Zermelo, that would, in an
important class of cases, give an existence-theorem where no particular
instance of its truth can be found.

In virtue of “F:(2).¢pz.D.¢y” and “F:¢y.D.(gx). ¢z,” we have
“Fi(z).pz.D.(qe). pz,” v.e. “what is always true is sometimes true.”
This would not be the case if nothing existed ; thus our assumptions contain
the assumption that there is something. This is involved in the principle
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that what holds of all, holds of any; for this would not be true if there were
no “any.”

(4) “If ¢z is always true, and Yz is always true, then ‘¢ . Yz’ is always

true,” 7.e.
(This requires that ¢ and yr should be functions which take arguments of the

same ¢ype. We shall explain this requirement at a later stage.) The converse
also holds; 7.e. we have

It is to some extent optional which of the propositions connecting real
and apparent variables are taken as primitive propositions. The primitive
propositions assumed, on this subject, in the body of the work (¥9), are the
following :

(1) F:dz.D.(q2). ¢z ',
(2) F:dzvoy.d.(q2). ¢z,
ve. if either ¢x is true, or ¢y is true, then (7z).dz is true. (On the

necessity for this primitive proposition, see remarks on %911 in the body
of the work.)

(3) If we can assert ¢y, where y is a real variable, then we can assert
(%) . ¢z ; 1.e. what holds of any, however chosen, holds of all.

Formal vmplication and formal equivalence. When an implication, say
¢z . D .4z, is said to hold always, 7.e. when (z) : ¢z . D . Y@, we shall say that
oz formally implies Yz ; and propositions of the form “ () : px . D . Yrz” will
be said to state formal tmplications. In the usual instances of implication,
such as “‘Socrates is a man’ implies ‘ Socrates is mortal,’” we have a propo-
sition of the form “ ¢z .D .4z ” in a case in which “(z): ¢z .D . Yz ” is true.
In such a case, we feel the implication as a particular case of a formal impli-
cation. Thus it has come about that implications which are not particular
cases of formal implications have not been regarded as implications at all.
There is also a practical ground for the neglect of such implications, for, speaking
generally, they can only be known when it is already known either that their
hypothesis is false or that their conclusion is true; and in neither of these
cases do they serve to make us know the conclusion, since in the first case
the conclusion need not be true, and in the second it is known already.
Thus such implications do not serve the purpose for which implications are
chiefly useful, namely that of making us know, by deduction, conclusions of
which we were previously ignorant. Formal implications, on the contrary,
do serve this purpose, owing to the psychological fact that we often know
“(@):¢px.Dd.yx” and ¢y, in cases where +ry (which follows from these
premisses) cannot easily be known directly.
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These reasons, though they do not warrant the complete neglect of impli-
cations that are not instances of formal implications, are reasons which make
formal implication very important. A formal implication states that, for all
possible values of z, if the hypothesis ¢a is true, the conclusion x is true.
Since “ ¢a . D .Y will always be true when ¢a is false, it is only the values
of # that make ¢z true that are tmportant in a formal implication ; what 1s
effectively stated is that, for all these values, Y& is true. Thus propositions
of the form “all a is B,” “no a is B” state formal implications, since the
first (as appears by what has just been said) states

(x):wisana.d.zisa B,
while the second states
(z):zisana.d.2z1s not a B.

And any formal implication “(«) : ¢z . D . & ” may be interpreted as: “All
values of # which satisfy* ¢z satisfy +,” while the formal implication
“(z) : ¢ . D .~pz” may be interpreted as: “No values of # which satisfy ¢z
satisfy ra.”

We have similarly for “some a is 8” the formula
(qr).zisana.zisa B,
and for “some a is not 8 ” the formula
(7).  is an a . z is not a B.

Two functions ¢z, Yo are called formally equivalent when each always

implies the other, v.e. when
(z): pz .= Y2,

and a proposition of this form is called a formal equivalence. In virtue of
what was said about truth-values, if ¢z and yrz are formally equivalent, either
may replace the other in any truth-function. Hence for all the purposes of
mathematics or of the present work, ¢2 may replace 2 or vice versa -in any
proposition with which we shall be concerned. Now to say that ¢z and Y=
are formally equivalent is the same thing as to say that ¢2 and 2 have the
same extension, 1.e. that any value of « which satisfies either satisfies the
other. Thus whenever a constant function occurs in our work, the truth-
value of the proposition in which it occurs depends only upon the extension
of the function. A proposition containing a function ¢2 and having this
property (i.e. that its truth-value depends only upon the extension of ¢Z) will
be called an extensional function of 2. Thus the functions of functions with
which we shall be specially concerned will all be extensional functions of
functions.

What has just been said explains the connection (noted above) between
the fact that the functions of propositions with which mathematics is specially

* A value of z is said to satisfy ¢z or ¢f when ¢z is true for that value of z.
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concerned are all truth-functions and the fact that mathematics is concerned
with extensions rather than intensions.

Conventent abbreviation. The following definitions give alternative and
often more convenient notations:

2., Ywi=:(2)iga.d. Y D
¢z.= . Yr:=:(x):pz.=.Yx DL

This notation “¢z.D,.ya” is due to Peano, who, however, has no notation

for the general idea “(z). ¢2.” It may be noticed as an exercise in the use
of dots as brackets that we might have written

¢z Yz .=.(z).pz Iz Df,
dpr = Yz.=.(z) . pxr=Yx Df.

In practice however, when ¢2 and % are special functions, it is not possible
to employ fewer dots than in the first form, and often more are required.

The following definitions give abbreviated notations for functions of two
or more variables:

(@y) . d(@y).=:@):(y).p(xy) Df

and so on for any number of variables ;

$@ Y Duy-Y@y:i=:(®y:d@y.3.-¥@y Df

and so on for any number of variables.

Identity. The propositional function “# is identical with y” is ex-
pressed by
z=1.
This will be defined (cf. ¥13:01), but, owing to certain difficult points involved
in the definition, we shall here omit it (cf. Chapter II). We have, of
course,
F.z=2 (the law of identity),
Fiz=y.=.y=ux,
Fio=y.y=2.d.z=uz
The first of these expresses the reflexive property of identity: a relation is
called reflexive when it holds between a term and itself, either universally, or
whenever it holds between that term and some term. The second of the
above propositions expresses that identity is a symmetrical relation: a relation
is called symmetrical if, whenever it holds between # and y, it also holds
between y and @. The third proposition expresses that identity is a transitive
relation : a relation is called transitive if, whenever it holds between z and y
and between y and z, it holds also between « and 2.

We shall find that no new definition of the sign of equality is required i.n
mathematics : all mathematical equations in which the sign of equality is



24 INTRODUCTION [cHAP.

used in the ordinary way express some identity, and thus use the sign of
equality in the above sense.

If # and y are identical, either can replace the other in any proposition
without altering the truth-value of the proposition ; thus we have
Fira=y.D.dz= ¢y
This is a fundamental property of identity, from which the remaining properties
mostly follow.

It might be thought that identity would not have much importance, since
it can only hold between # and y if # and y are different symbols for the
same object. This view, however, does not apply to what we shall call
“descriptive phrases,” 7.e. “the so-and-so.” It is in regard to such phrases
that identity is important, as we shall shortly explain. A proposition such
as “Scott was the author of Waverley ” expresses an identity in which there
is a descriptive phrase (namely “the author of Waverley ”); this illustrates
how, in such cases, the assertion of identity may be important. It is
essentially the same case when the newspapers say “the identity of the
criminal has not transpired.” In such a case, the criminal is known by a
descriptive phrase, namely “the man who did the deed,” and we wish to
find an 2 of whom it is true that “« = the man who did the deed.” When
such an « has been found, the identity of the criminal has transpired.

Classes and relations. A class (which is the same as a manifold or
aggregate) is all the objects satisfying some propositional function. If a is
the class composed of the objects satisfying ¢2, we shall say that « is the clags
determined by ¢2. Every propositional function thus determines a class,
though if the propositional function is one which is always false, the class
will be null, v.e. will have no members. The class determined by the function
¢z will be represented by 2 (¢2)*. Thus for example if ¢« is an equation,
2 (¢z) will be the class of its roots ; if ¢z is “« has two legs and no feathers,”
2 (¢2) will be the class of men; if ¢z is “ 0 < < 1,” 2 (¢2) will be the class
of proper fractions, and so on.

It is obvious that the same class of objects will have many determining
functions. When it is not necessary to specify a determining function of a
class, the class may be conveniently represented by a single Greek letter.
Thus Greek letters, other than those to which some constant meaning is
assigned, will be exclusively used for classes.

There are two kinds of difficulties which arise in formal logic; one kind
arises in connection with classes and relations and the other in connection
with descriptive functions. The point of the difficulty for classes and
relations, so far as it concerns classes, is that a class cannot be an object
suitable as an argument to any of its determining functions. If a represents

* Any other letter may be used instead of z.
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a class and ¢Z one of its determining functions [so that a=2(¢2)], it is not
sufficient that ¢a be a false proposition, it must be nonsense. Thus a
certain classification of what appear to be objects into things of essentially
different types seems to be rendered necessary. This whole question is dis-
cussed in Chapter I, on the theory of types, and the formal treatment in the
systematic exposition, which forms the main body of this work, is guided
by this discussion. The part of the systematic exposition which is specially
concerned with the theory of classes is %20, and in this Introduction it is
discussed in Chapter III. It is sufficient to note here that, in the complete
treatment of %20, we have avoided the decision as to whether a class of
things has in any sense an existence as one object. A decision of this
question in either way is indifferent to our logic, though perhaps, if we had
regarded some solution which held classes and relations to be in some real
sense objects as both true and likely to be universally received, we might
have simplified one or two definitions and a few preliminary propositions.
Our symbols, such as “2(¢z)” and a and others, which represent classes
and relations, are merely defined in their use, just as y? standing for
0* 0 0
R R

has no meaning apart from a suitable function of «, ¥, z on which to operate.
The result of our definitions is that the way in which we use classes corre-
sponds in general to their use in ordinary thought and speech; and whatever
may be the ultimate interpretation of the one is also the interpretation of
the other. Thus in fact our classification of types in Chapter II really
performs the single, though essential, service of justifying us in refraining
from entering on trains of reasoning which lead to contradictory conclusions.
The justification is that what seem to be propositions are really nonsense.

The definitions which occur in the theory of classes, by which the idea of
a class (at least in use) is based on the other ideas assumed as primitive,
cannot be understood without a fuller discussion than can be given now
(cf. Chapter II of this Introduction and also %20). Accordingly, in this
preliminary survey, we proceed to state the more important simple pro-
positions which result from those definitions, leaving the reader to employ in
his mind the ordinary unanalysed idea of a class of things. Our symbols
in their usage conform to the ordinary usage of this idea in language.
It is to be noticed that in the systematic exposition our treatment of classes
and relations requires no new primitive ideas and only two new primitive
propositions, namely the two forms of the “Axiom of Reducibility” (cf. next
Chapter) for one and two variables respectively.

The propositional function “z is a member of the class a” will be
expressed, following Peano, by the notation

& €.
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Here € is chosen as the initial of the word éori. “zea” may be read “ is
an a.” Thus “ze man” will mean “z is a man,” and so on. For typographical
convenience we shall put

ze~ea,.=.~(rea) Df,
z,yea.=.xea.yea DL
For “class” we shall write “Cls”; thus “a e Cls” means “ a is a class.”

We have
FrzeZ(pe).=. ¢u,
v.e. “‘z is a member of the class determined by ¢2’ is equivalent to ‘«
satisfies ¢2, or to ‘¢ is true.”

A class is wholly determinate when its membership is known, that is,
there cannot be two different classes having the same membership. Thus if
¢z, Yo are formally equivalent functions, they determine the same class;
for in that case, if # is a member of the class determined by ¢#, and therefore
satisfies ¢z, it also satisfies Yz, and is therefore a member of the class
determined by 2. Thus we have

Fi2(p2)=2(Y2).=:pz.=,. Y.
The following propositions are obvious and important :
Froa=2(¢2).=:1zea.=,. ¢z,
Te a is 1dentlcal with the class determined by ¢2 when, and only when
‘z is an a” is formally equivalent to ¢z;

Froa=B.=:12¢a.=,.2€p,

i.e. two classes « and B are identical when, and only when, they have the
same membership ; ‘
F.Z(zea)=a,

i.e. the class whose determining function is “z is an a” is a, in other words,
a is the class of objects which are members of a;

F.2(¢2) eCls,
t.e. the class determined by the function ¢2 is a class.

It will be seen that, according to the above, any function of one variable
can be replaced by an equivalent function of the form “zea.” Hence any
extensional function of functions which holds when its argument is a function
of the form “Z ¢ a,” whatever possible value a may have, will hold also when
its argument is any function ¢2. Thus variation of classes can replace
variation of functions of one variable in all the propositions of the sort with
which we are concerned.

In an exactly analogous manner we introduce dual or dyadic relations,
t.e. relations between two terms. Such relations will be called simply
“relations ”; relations between more than two terms will be distinguished
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as multiple relations, or (when the number of their terms is specified) as
triple, quadruple,...relations, or as triadie, tetradic,...relations. Such relations
will not concern us until we come to Geometry. For the present, the only
relations we are concerned with are dual relations.

Relations, like classes, are to be taken in extension, z.e. if R and S are
relations which hold between the same pairs of terms, R and S are to be
identical. We may regard a relation, in the sense in which it is required
for our purposes, as a class of couples; t.e. the couple (z, y) is to be one of
the class of couples constituting the relation R if  has the relation R to y*.
This view of relations as classes of couples will not, however, be introduced
into our symbolic treatment, and is only mentioned in order to show that it
1s possible so to understand the meaning of the word relation that a relation
shall be determined by its extension.

Any function ¢ (=, y) determines a relation R between z and y. If we
regard a relation as a class of couples, the relation determined by ¢ (z, ¥) is
the class of couples (z, %) for which ¢ (z, y) is true. The relation determined
by the function ¢ (=, y) will be denoted by

)¢ (=, y).
We shall use a capital letter for a relation wheun it is not necessary to
specify the determining function. Thus whenever a capital letter occurs, it
1s to be understood that it stands for a relation.

The propositional function “z has the relation R to y” will be expressed
by the notation
xRy.
-This notation is designed to keep as near as possible to common language,
which, when it has to express a relation, generally mentions it between its
terms, as in “ z loves y,” “« equals y,” “« 1s greater than y,” and so on. For
“relation” we shall write “ Rel ”; thus “ R ¢ Rel” means “ R is a relation.”

Owing to our taking relatlons in extension, we shall have

Fi2§p(my) =20 (2, 9) - =: ¢ (5,Y) - S,y - ¥ (2, ),
t.e. two functions of two variables determine the same relation when, and
only when, the two functions are formally equivalent.

We have Foz @b (z, )}l w.=. ¢ (z,w),
v.e. “z has to w the relation determined by the function ¢ (2, y) ” is equivalent

to ¢ (z,w);
P R=27¢ (z,y).=:aBy. =0y . b (2,7),
FieR=8.=:2Ry.=,,.28y,
l- 249 (xRy) = R,
. {w§¢ (=, y)} e Rel.

* Such a couple has a sense, i.e. the couple (z, y) is different from the couple (y, z), unless
z=y. We shall call it a * couple with sense,” to distinguish it from the class consisting of =
and y. It may also be called an ordered couple.
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These propositions are analogous to those previously given for classes.
It results from them that any function of two variables is formally equivalent
to some function of the form zRy; hence, in extensional functions of two

variables, variation of relations can replace variation of functions of two
variables.

Both classes and relations have properties analogous to most of those of
. propositions that result from negation and the logical sum. The logical
product of two classes a and B is their common part, z.e. the class of terms
which are members of both. This is represented by an 3. Thus we put

anB=2(zea.zefB) Df
This gives us FrrzeanB.=.zea.zef,

t.e. “x is a member of the logical product of a and 3 is equivalent to the
logical product of “« is a member of ¢” and “« is a member of 3.”

.Similarly the logical sum of two classes a and B is the class of terms
which are members of either; we denote it by a vB. The definition is

avfB=%@xea.v.zeB) Df,
and the connection with the logilcal sum of propositions is given by

Fr.zeavB.=:zea.v.zep.

The negation of a class a consists of those terms « for which “zea” can
be significantly and truly denied. We shall find that there are terms of other
types for which “x ea” is neither true nor false, but nonsense. These terms
are not members of the negation of a.

Thus the negation of a class a is the class of terms of suitable type
which are not members of it, 1.e. the class & (x~ea). We call this class “—a”
(read “not-a”); thus the definition is

—a=%(z~ea) Df
and the connection with the negation of propositions is given by
Fize—a.=.2~ea.
In place of implication we have the relation of inclusion. A class «
is said to be included or contained in a class 8 if all members of a are

members of B, ve. if vea.D,.2eB We write “aCB” for “a is contained
in 8. Thus we put

aCB.=:zea.l,.zeB Df.

Most of the formulae concerning p.q, pvg, ~p, p D q remain true if we
substitute an B, a v B, —a, aCB. In place of equivalence, we substitute
identity; for “p=q” was defined as “p I ¢.¢ I p,” but “aCB.B Ca” gives
“Tea.=z.x€B,’ whence a=g.
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The following are some propositions concerning classes which are analogues
of propositions previously given concerning propositions :

FoanB=—(—av—§g),
t.e. the common part of a and B is the negation of “not-a or not-8”;
Foze(av—a),
.e. “z 1s a member of a or not-a”;
F.xz~e(an—a),
.. “ 1s not a member of both a« and not-a”;
Foa=—(—a),
F:aCB.=.—BC—q,
Fra=R.=.—a=-4,

Fra=ana,

il

Fia=ava
The two last are the two forms of the law of tautology.
The law of absorption holds in the form
F:aCB.=a=anpf.
Thus for example “all Cretans are liars” is equivalent to “ Cretans are
identical with lying Cretans.”

Just as we have F:pJg.q2r.d.pIn,
so we have F:aCB.B8Cy.D.aCy.

This expresses the ordinary syllogism in Barbara (with the premisses
interchanged); for “ « C3” means the same as “all a’s are B's,” so that the
above proposition states: “If all a’s are B’s, and all B’s are «’s, then all o’s
are ¢’s.” (It should be observed that syllogisms are traditionally expressed
with “therefore,” as if they asserted both premisses and conclusion. This is,
of course, merely a slipshod way of speaking, since what is really asserted is

only the connection of premisses with conclusion.)

The syllogism in Barbara when the minor premiss has an individual

subject is
F:zeB.BCy.J.zey,

e.g. “if Socrates is a man, and all men are mortals, then Socrates is a
mortal.” This, as was pointed out by Peano, is not a particular case of
“aCB.BCry.D.aCy” since “oeB” is not a particular case of “aCB.”
This point is important, since traditional logic is here mistaken. The nature
and magnitude of its mistake will become clearer at a later stage.

For relations, we have precisely analogous definitions and propositions.
We put .
RAS=2)(«Ry.2Sy) Df,
which leads to F:e(RAS)y.=.2Ry.2Sy.
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Similarly Ry S=2§(«Ry .v.2Sy) Df,
“R=0j{~@Ry} DI
RCGS.=:2Ry.D,,.28y Df
Generally, when we require analogous but different symbols for relations
and for classes, we shall choose for relations the symbol obtained by adding
a dot, in some convenient position, to the corresponding symbol for classes.
(The dot must not be put on the line, since that would cause confusion with
the use of dots as brackets.) But such symbols require and receive a special
definition in each case.

A class 1s said to ezist when it has at least one member: “a exists”
i1s denoted by “g!a” Thus we put

qla.=.(gz).zea DL

The class which has no members is called the ‘“null-class,” and is
denoted by “A.” Any propositional function which is always false deter-
mines the null-class. One such function is known to us already, namely
“g is not identical with #,” which we denote by “2 < 2.” Thus we may use
this function for defining A, and put

A=Z(@x+2) Df

The class determined by a function which is always true is called the
untversal class, and is represented by V; thus

V=2(@=2) Df
Thus A is the negation of V. We have
F.(z).zeV,
v.e. “‘x 1s a member of V'’ is always true”; and
Fof@).z~eA,
n.e. “ ‘@ 1s a member of A’ is always false.” Also
Fra=A.=.~mqlq
t.e. “a is the null-class” is equivalent to “a does not exist.”
For relations we use similar notations. We put
H!'R.=.(qz,v) . 2Ry,
t.e. “! R” means that there is at least one couple z, ¥ between which the
relation R holds. A will be the relation which never holds, and V the

relation which always holds. V is practically never required ; A will be the
relation 2§ (¢« .y+y). We have

Fo(z,9).~(@Ay),
and F:R=A.=.~q!R

1
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There are no classes which contain objects of more than one type.
Accordingly there is a universal class and a null-class proper to each type
of object. But these symbols need not be distinguished, since it will be
found that there is no possibility of confusion. Similar remarks apply to
relations.

Descriptions. By a “description” we mean a phrase of the form “the
go-and-so” or of some equivalent form. For the present, we confine our
attention to the in the singular. We shall use this word strictly, so as to
imply uniqueness; e.g. we should not say “ 4 is the son of B” if B had other
sons besides A. Thus a description of the form “the so-and-so” will only
have an application in the event of there being one so-and-so and no more.
Hence a description requires some propositional function ¢& which is satisfied
by one value of # and by no other values; then “the x which satisfies ¢2”
is a description which definitely describes a certain object, though we may
not know what object it describes. For example, if y is a man, “z is the
father of y” must be true for one, and only one, value of . Hence “the
father of y” is a description of a certain man, though we may not know what
man it describes. A phrase containing “the” always presupposes some
initial propositional function not containing “the”; thus instead of “« is the
father of ¥” we ought to take as our initial function “z begot y”; then “the
father of y” means the one value of x which satisfies this propositional
function.

If ¢2 is a propositional function, the symbol “(1z)(¢z)” is used in our
symbolism in such a way that it can always be read as “the x which
satisfies ¢2.” But we do not define “(12)(px)” as standing for “the «
which satisfies ¢2,” thus treating this last phrase as embodying a primitive
idea. Every use of “(12)(¢x),” where it apparently occurs as a constituent
of a proposition in the place of an object, is defined in terms of the primitive
ideas already on hand. An example of this definition in use is given by
the proposition “E! (12)(¢z)” which is considered immediately. The whole

subject is treated more fully in Chapter III.

The symbol should be compared and contrasted with “Z (¢z)” which in
use can always be read as “the #’s which satisfy ¢2.” Both symbols are
incomplete symbols defined only in use, and as such are discussed in
Chapter III. The symbol “Z(¢x)” always has an application, namely to
the class determined by ¢ ; but “(1x) (¢x)” only has an application when
@2 is only satisfied by one value of , neither more nor less. It should also
be observed that the meaning given to the symbol by the definition, given
immediately below, of E! (72)(¢2) does not presuppose that we know the
meaning of “one.”” This is also characteristic of the definition of any other
use of (1z) (¢px).
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We now proceed to define “E! (1z) (¢z)” so that it can be read “the z
satisfying ¢z exists.” (It will be observed that this is a different meaning
of existence from that which we express by “.”) Its definition is

El(z)(¢z) . =: (ge): pz . =, . a=c¢ Df,
t.e. “the « satisfying ¢Z exists” is to mean “there is an object ¢ such
that ¢x is true when 2 is ¢ but not otherwise.”

The following are equivalent forms:

Fo. B (z)(¢pa) . =: (ge): dpe: pz. D, v =0,
F:. EY(12)(¢2) . =:(He) - pei 2.y « Dy - =1,
FoE(1z)(¢z) .= : (o) i pc i@ dc . Dy .~ .

The last of these states that “ the x satisfying ¢2 exists” is equivalent to
“there is an object ¢ satisfying ¢2, and every object other than ¢ does not
satisfy ¢2.”

The kind of existence just defined covers a great many cases. Thus
for example “the most perfect Being exists” will mean :

ll

(I

(Hc) = « 1s most perfect . =, . z=c,
which, taking the last of the above equivalences, is equivalent to
(gc) = ¢ is most perfect : & ¢ . J, .  is not most perfect.

A proposition such as “ Apollo exists” is really of the same logical form,
although it does not explicitly contain the word ¢he. For “ Apollo” means
really “ the object having such-and-such properties,” say “the object having
the properties enumerated in the Classical Dictionary*.” If these properties
make up the propositional function ¢z, then “Apollo” means “(1z)(px),”
and “Apollo exists” means “E!(12)(¢z).” To take another illustration,
“the author of Waverley” means “the man who (or rather, the object
which) wrote Waverley.” Thus “Scott is the author of Waverley” is

Scott = (1) (x wrote Waverley).

Here (as we observed before) the importance of identity in connection with
descriptions plainly appears.

The notation “(1z) (¢z),” which is long and inconvenient, is seldom used,
being chiefly required to lead up to another notation, namely “ R¢y,” meamng
“ the object having the relation R to .” That is, we put

Ry = (1z)(zRy) Df.

The inverted comma may be read “of” Thus “ R” is read “ the R of 4.”
Thus if R is the relation of father to son, “ R‘y” means “the father of y”;
if R is the relation of son to father, “ R‘y” means “ the son of y,” which will

* The same principle applies to many uses of the proper names of existent objects, e.g. to all
uses of proper names for objects known to the speaker only by report, and not by personal

acquaintance.
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only “exist” if y has one son and no more. R¢y is a function of y, but not
a propositional function; we shall call it a descriptive function. All the
ordinary functions of mathematics are of this kind, as will appear more fully
in the sequel. Thus in our notation, “sin " would be written “sin ‘y,” and
“sin” would stand for the relation which sin ¢y has to y. Instead of a variable
descriptive function fy, we put Rfy, where the variable relation R takes
the place of the variable function f. A descriptive function will in general
exist while y belongs to a certain domain, but not outside that domain;
thus if we are dealing with positive rationals, 4/y will be significant if y
is a perfect square, but not otherwise; if we are dealing with real numbers,
and agree that “,/y” is to mean the positive square root (or, is to mean the
negative square root), v/y will be significant provided y is positive, but not
otherwise; and so on. Thus every descriptive function has what we may
call a “domain of definition” or a “domain of existence,” which may be thus
defined: If the function in question is Ry, its domain of definition or of
existence will be the class of those arguments y for which we have E! R¢y,
v.e. for which E! (12) (zRy), 1.e. for which there is one z, and no more, having
the relation R to y.

If R is any relation, we will speak of Ry as the “associated descriptive
function.” A great many of the constant relations which we shall have
occasion to introduce are only or chiefly important on account of their
associated descriptive functions. In such cases, it is easier (though less
correct) to begin by assigning the meaning of the descriptive function, and
- to deduce the meaning of the relation from that of the descriptive function.
This will be done in the following explanations of notation.

Various descriptive functions of relations. If R is any relation, the
converse of R is the relation which holds between y and # whenever R
holds between x and y. Thus greater is the converse of less, before of
after, cause of effect, husband of wife, etc. The converse of R is written*

Cnv‘R or R. The definition is

R=%)(yRe) Df,
Cnv'R=R Df.

The second of these is not a formally correct definition, since we ought to
define “Cnv” and deduce the meaning of Cnv‘R. But it is not worth
while to adopt this plan in our present introductory account, which aims
at simplicity rather than formal correctness.

A relation is called symmetrical if R = l\é, t.e. if it holds between y and «
whenever it holds between z and y (and therefore vice versa). Identity,

* The second of these notations is taken from Schroder’s Algebra und Logik der Relative.

R. & W. 3
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diversity, agreement or disagreement in any respect, are symmetrical relations.
A relation is called asymmetrical when it is incompatible with its converse,

7.e. when B A é:f\, or, what is equivalent,
2Ry « g,y »~(yRe).

Before and after, greater and less, ancestor and descendant, are asym-
metrical, as are all other relations of the sort that lead to series. But there are
many asymmetrical relations which do not lead to series, for instance, that of
wife’s brother*. A relation may be neither symmetrical nor asymmetrical ;
for example, this holds of the relation of inclusion between classes: a €8 and
B C a will both be true if a=p, but otherwise only one of them, at most, will
be true. The relation brother is neither symmetrical nor asymmetrical, for
if x is the brother of y, y may be either the brother or the sister of .

In the propositional function zRy, we call z the referent and y the
relatum. The class & (#Ry), consisting of all the #’s which have the relation
R to y, is called the class of referents of y with respect to #; the class TR
4 (zRy), consisting of all the y’s to which z has the relation R, is called the
class of relata of # with respect to R. These two classes are denoted

. - «
respectively by Ry and R‘%. Thus
_)
Ry=2(«Ry) Df,

< v
Réz=9(yRz) Df.
The arrow runs towards ¥ in the first case, to show that we are concerned
with things having the relation R to y; it runs away from  in the second
—
case to show ‘that the relation R goes from z to the members of R‘z.
It runs in fact from a referent and towards a relatum.
. _) ‘— -
The notations Ry, R‘x are very important, and are used constantly. If

- «
R is the relation of parent to child, Ry = the parents of y, R‘z = the children
of z. We have

e 4
F:ozeRy.=.2Ry
.
and F:yeRz.=.xRy.

These equivalences are often embodied in common language. For example,
we say indiscriminately “«is an inhabitant of London” or “# inhabits London.”
If we put “R” for “inhabits,” “z inhabits London” is “2 R London,” while “x

—
is an inhabitant of London ” is “ z ¢ B¢ London.”

* This relation is not strictly asymmetrical, but is so except when the wife’s brother is also
the sister’s husband. In the Greek Church the relation is strictly asymmetrical.
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- «
Instead of R and R we sometimes use sg‘R, gs‘R, where “sg” stands for
“sagitta,” and “gs” is “sg” backwards. Thus we put

_.)
sg’R=R Df,

(_.
gs’R=R Df.

These notations are sometimes more convenient than an arrow when the
relation concerned is represented by a combination of letters, instead of a
single letter such as R. Thus eg. we should write sg(R A S), rather than
put an arrow over the whole length of (K AS).

The class of all terms that have the relation R to something or other is
called the domain of R. Thus if R is the relation of parent and child, the
domain of R will be the class of parents. We represent the domain of B by
“D‘R” Thus we put

DR =2 {(qy) .«Ry} Df.

Similarly the class of all terms to which something or other has the relation
R is called the converse domain of R; it is the same as the domain of the
converse of B. 'The converse domain of R is represented by “d‘R”; thus

d‘R=4 {(qz) . 2Ry} DL

The sum of the domain and the converse domain is called the field, and is
represented by C*R: thus
- C‘R=D‘Rvd‘R Df

The field is chiefly important in connection with series. If R is the
ordering relation of a series, C*R will be the class of terms of the series, D‘R
will be all the terms except the last (if any), and (‘R will be all the terms
except the first (if any). The first term, if it exists, is the only member of
DR n - d*R, since it is the only term which is a predecessor but not a
follower. Similarly the last term (if any) is the only member of A Rn—D*R.
The condition that a series should have no end is QR CD‘R, v.e. “every
follower is a predecessor”; the condition for no beginning is D‘R CJ‘R.
These conditions are equivalent respectively to DR = C*R and (‘R = C*R.

The relative product of two relations R and S is the relation which holds
between # and z when there is an intermediate term y such that z has the
relation R to y and y has the relation S to 2. The relative product of R and
S is represented by R |S; thus we put

R|S =22 {(qy). xRy .ySz} Df,
whence F:az(R|S)z.=.(qy). 2Ry .ySz.

Thus “paternal aunt” is the relative product of sister and father; “ paternal
grandmother” is the relative product of mother and father; “maternal

3—2
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grandfather ” is the relative product of father and mother. The relative pro-
duct is not commutative, but it obeys the associative law, v.e.
FA(PIQ)R=P|(Q] ).
It also obeys the distributive law with regard to the logical addition of
relations, z.e. we have
F.P(QuR)=(P[Q)v(P|R)
F-QuR)|P=(Q|P)u(@|R) ; -

But with regard to the logical product, we have only
F.P(@AR)C(P|Q)A(P|R),
F.QAR)PCRIP)A(RIR). ~

The relative product does not obey the law of tautology, .e. we do not

have in general R|R=R. We put
R*=R|R Df.
Thus paternal grandfather = (father),

maternal grandmother = (mother)2.

A relation is called ¢transitive when R? G R, v.e. when, if 2Ry and yRz, we
always have Rz, v.e. when

Ry .yRz . D, y,,. vR2.
Relations which generate series are always transitive ; thus eg.
BS>Y Y>> 20Dy 8> 2 ,

If P is a relation which generates a series, P may conveniently be read
“ precedes”; thus “aPy.yPz.D,, ,.2Pz” becomes “if « precedes y and y
precedes z, then « always precedes 2.” The class of relations which generate
series are partially characterized by the fact that they are transitive and
asymmetrical, and never relate a term to itself.

If P is a relation which generates a series, and if we have not merely
P?CP,but P*=P, then P generates a series which is compact (tiberall duicht),
t.e. such that there are terms between any two. For in this case we have

2Pz .2 .(qy). Py . yPz,

t.e. if z precedes z, there is a term y such that  precedes y and y precedes z,
t.e. there is a term between 2 and z. Thus among relations which generate
series, those which generate compact series are those for which P2 = P,

Many relations which do not generate series are transitive, for example,
identity, or the relation of inclusion between classes. Such cases arise
when the relations are not asymmetrical. Relations which are transitive
and symmetrical are an important class: they may be regarded as consisting
in the possession of some common property.
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Plural descriptive functions. The class of terms & which have the relation

R to some member of a class a is denoted by R“a or R.a. The definition is

Ra=2%{(qy) .yea.xRy] Df.
Thus for example let R be the relation of inhabiting, and a the class of
towns; then Rf‘a=inhabitants of towns. Let R be the relation “less than”
among rationals, and a the class of those rationals which are of the form
1-277, for integral values of n; then R‘a will be all rationals less than
some member of a, 7. all rationals less than 1. If P is the generating
relation of a series, and a is any class of members of P, P*“a will be pre-
decessors of a’s, v.e. the segment defined by a. If P is a relation such that
Pty always exists when yea, P““a will be the class of all terms of the form
P¢y for values of y which are members of a; v.e.

Pa=2{(qy)-yea.z= Py}
Thus a member of the class “fathers of great men” will be the father of y,
where y is some great man. In other cases, this will not hold; for instance,
let P be the relation of a number to any number of which it is a factor; then
P*¢ (even numbers) = factors of even numbers, but this class is not composed
of terms of the form “the factor of z,” where # 1s an even number, because
numbers do not have only one factor apiece.

Unit classes. The class whose only member is 2 might be thought to be
identical with a, but Peano and Frege have shown that this is not the case.
(The reasons why this is not the case will be explained in a preliminary way
in Chapter II of the Introduction.) We denote by “t‘c” the class whose
only member is z: thus

te=9(y==x) DI,
.e. “tz” means “ the class of objects which are identical with z.”

The class consisting of # and y will be t“z v t‘y; the class got by adding
z to a class a will be avt‘z; the class got by taking away = from a class «
will be a—t2. (We write a— B as an abbreviation for a n — 3.)

It will be observed that unit classes have been defined without reference
to the number 1; in fact, we use unit classes to define the number 1. This
number is defined as the class of unit classes, 7.e.

l=a{(gz).a=1c} Df.
This leads to
Firael.=:(go)i1yea.=,.y=a.
From this it appears further that
Frael.=.E!(2)(zea),
whence F:2(p2)el.=.E!l(iz)(d2),

t.e. “Z(¢z) is a unit class” is equivalent to “ the a satisfying ¢@ exists.”
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If ael, Ta is the only member of a, for the only member of « is the only

term to which a has the relation ¢. Thus“t‘a” takes the place of “(1z) (dz),”

v

if a stands for 2 (¢z). In practice, “t‘a” is a more convenient notation than

“(1z) (px),” and is generally used instead of “ (1z) (¢x).”

The above account has explained most of the logical notation employed
in the present work. In the applications to various parts of mathematics,
other definitions are introduced; but the objects defined by these later
definitions belong, for the most part, rather to mathematics than to logic.
The reader who has mastered the symbols explained above will find that any
later formulae can be deciphered by the help of comparatively few additional
definitions.



