
iSuperColliderKit: A Toolkit for iOS Using an Internal
SuperCollider Server as a Sound Engine

Akinori Ito Kengo Watanabe Genki Kuroda Ken’ichiro Ito
Tokyo University of Tech-

nology
akinori@edu.teu.

ac.jp

Watanabe-DENKI Inc.
kengo@wdkk.co.jp

Tokyo University of Tech-
nology

g3115002e8@edu.teu.
ac.jp

Tokyo University of Tech-
nology

itoken@stf.teu.
ac.jp

ABSTRACT
iSuperColliderKit is a toolkit for iOS using an internal
SuperCollider Server as a sound engine. Through this re-
search, we have adapted the exiting SuperCollider source
code for iOS to the latest environment. Further we attempt-
ed to detach the UI from the sound engine so that the native
iOS visual objects built by objective-C or Swift, send to the
internal SuperCollider server with any user interaction
events. As a result, iSuperColliderKit makes it possible to
utilize the vast resources of dynamic real-time changing
musical elements or algorithmic composition on SuperCol-
lider for iOS programmers.

1. INTRODUCTION
iSuperColliderKit is a development toolkit that adapts for
the iOS7 later. It consists of two units, iSCKit and iSCApp.
iSCKit generates three static libraries for building an iOS
application using SuperCollider as a sound engine. iSCApp
is a sample project which shows the usage of this toolkit. It
has capability that programmers can develop their UI pro-
gramming with iOS native API and programming language
and sound designing with SuperCollider language simulta-
neously. In this paper, we present the improvement and test-
ing process of it.

2. BACKGROUND / MOTIVATION
Smartphones and tablets become widely used as a music
production environment, not only computer music research
but popular one. In the computer music research field, the
major development tools, Csound and stk have already been
ported to iOS[1][2]. AudioKit[3] is a toolkit for iOS and
MacOS based on Csound. Developers can make some syn-
thesizers and effectors and control the parameters from Na-
tive iOS API.

One of similar computer music tools is SuperCollider[4].
It consists of two elements, synthesis server and editor client.

The editor client sends the OSC code-fragments to its server.
Due to adopting the model, SuperCollider has feature that a
programmer can dynamically change some musical ele-
ments, phrases, rhythms, scales and so on. The real-time
interactivity is effectively utilized mainly in the live-coding
field. If the iOS developers would make their application
adopting the “sound-server” model, using SuperCollider
seems to be a reasonable choice. However, the porting situa-
tion is not so good. SonicPi[5] is the one of a musical pro-
gramming environment that has SuperCollider server inter-
nally. However, it is only for Raspberry Pi, Windows and
OSX. The similar one is Overtone[6]. But it does not have
the server internally. Overtone users have to install and run
SuperCollider separately from Overtone itself on Linux or
OSX. There is the iOS version of SuperCollider on
Sourcefourge[7] but unofficial. It cannot be built for iOS7
and later smoothly. In this research, we attempt to improve
the iOS version on GitHub on the assumption the following
situation.

Use case:
Ø Building a native iOS application
Ø Building visual objects used by native iOS API
Ø Embedding some SuperCollider code fragment as a

text
Ø Sending code fragments from iOS UI object in-

cluding the embedded SuperCollider code frag-
ments

Ø Changing musical elements in real-time
System requirements:

Ø Building SuperCollider for iOS7 and later
Ø Building on Xcode5 or later

touch interaction

modifying sound
in real-time

objC
UI

code

SC
server

SC
inter-
preter

on one iOS device

NSString

OSC msg.

sound

Figure 1. System flow

Copyright: © 2015 Akinori Ito et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 234 –

3. PILOT STUDY
At the start point of this research, we confirmed the GitHub
repository and tried to build it. The succeeded environment
with modest adjustments is below.

Table 1. Build environment on GitHub repository version.

It was not the latest environment. We set the target for im-
provement as below.

Table 2. Target environment on this research.

3.1 Adjustment for the latest environment

3.1.1 Compiler issue

Most of build errors caused with compiler issue. We made
modifications mainly three types of problems. First one is to
adopt for Automatic Reference Counting mechanism. Se-
cond one is to stop using 32bit version of ARM NEON as-
sembler language. We just changed to the traditional way,
array copy but still fast on the new generation hardware.
The last one is libsndfile issue. We solved it by utilizing the
source code from the latest Csound GitHub repository.

3.1.2 Software architectural issue

The previous version’s usage was the same of another OS
version. It assumed that users write the SuperCollider code
on the editor, select lines, region or file, then push ‘exec’
button to make sound. Any code send through the interpret-
er deeply connected the editor UI code internally.

Figure 2. The four main UI panel on previous iOS version

In the aspect of MVC class architecture, the previous ver-
sion was not enough segregated. Each function was gathered
into its SCController class. It caused to be difficult to sepa-
rate from SuperCollider synthesis engine to UI code of an-

other OS. We have untangled the codes in the SCController
class to separate MVC.

3.1.3 UI programming issue

Due to the problems on the version of InterfaceBuilder, the
codes around that were replaced into the new ones. Further,
we revised the usage of the application included this version
as a sound engine. Our goal is to create the application that
programmers can be embedded the SuperCollider code
fragments in the iOS Native visual object reacting user ac-
tions and sending the code to internal SuperCollider server.
The code does not go through the editor UI and interpreter
system. These improvements were related to 3.1.2.

After doing those improvements, we reconstructed the
project as ‘wdkk/supercollider_ios’ and opened on
GitHub[8] before releasing iSuperColliderKit.

Figure 3. Project tree of wdkk/supercollider_ios

3.2 Sending SC code fragments test from Objective-C

At this phase, it has not been separated the sending some
code fragments section from UI building block completely.
However, we were able to test to send them from an iOS
UIView object. The ‘LiveCodingViewController.mm’ is the
SuperCollider interpreter windows. We tested to send some
SuperCollider code fragments from UIView object instanti-
ated in LiveCodingViewController object.

IDE Xcode 4.6.2
Compiler LLVM GCC4.2
Hardware iPod touch 4th generation
iOS version Version 6.1.5

IDE Xcode 6.0
Compiler Apple LLVM 6.0
Hardware iPod touch 5th generation
iOS version Version 7.0

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 235 –

3.2.1 ‘interpret’ method in iSCController

The code fragments are sent through the ‘interpret’ method
in iSCController. In order to implement, the following ob-
jective-C code should be added into an interaction control
method in LiveCodingViewController.mm.
{

iSCController *scc=(iSCController*)(self.target);

[scc interpret:@"a = {SinOsc.ar()}.play"];
}

The strings “a={SinOsc.ar()}.play” following @ mark is the
SuperCollider code fragments reacting any interaction event.
The ‘self.target’ in the first line delegates to another control-
ler class a programmer should implement.

3.2.2 TouchView class and original behavior UI

In this test, we planed to instantiate four square UIView that
have each color. In order to be easy to test, we separated the
default UI action template to the other class named ‘Touch-
View’. It is not edited from standard UI interaction methods.
The following figure is the implemented UI.

Figure 4. UI for testing to send some code fragments.

Next, four TouchView objects were prepared in ‘LiveCod-
ingViewController.h’ as below.
@property TouchView *tv_red;

@property TouchView *tv_blue;

@property TouchView *tv_yellow;

@property TouchView *tv_green;

The example of implementing objective-C code for the red
square is below. For blue, yellow, green are rewrote partly.
self.tv_red = [[TouchView alloc] initWithFrame:

CGRectMake(20,200,60,60)]; //continue in 1 line

self.tv_red.backgroundColor=[UIColor redColor];

self.tv_red.delegate_touches=self;

self.tv_red.sel_touches_began=@selector(touchRed:withEvent:);

[self.view addSubview:self.tv_red];

The method selected by selector, in this case ‘touchRed’ is
the method for the red square. The method implementation
code is below that uses the code in 3.2.1

-(void)touchRed:(NSSet*)touches withEvent:(UIEvent *)event

{

iSCController *scc = (iSCController*)(self.target);

[scc interpret:@"a = {SinOsc.ar()}.play"];

}

Programmers can any kind of interaction and embedded a
SuperCollider code fragment, booting and halting server,
sending SynthDef, playing and stopping some phrases to
each object by implementing each method.

3.3 Real-Time Phrase Modification

For our purpose to use SuperCollider, beyond sound file
modifycation, we attempted the real-time modal change
application on this system. It is easy to realize on OSX.

At first, we prepared the loop sequence to start on the
booting the application. The pitches of loop sequence exam-
ple were written in SuperCollider code excerpt.

~offset = 60;

~seq = [0,2,3,5, 7,9,10,12]

key1 = ~seq[0].wrapAt(~pnt) + ~offset;

This example plays a minor chord loop sequence. It
plays by using TempoClock class. On another front, we
prepared the vector of another scales as below.

~phrygian = [0,1,3,5,7,8,10,12]

~lydian = [0,2,4,6,7,9,11,12]

~com_dim = [0,1,3,4,6,7,9,10,12];

By preparing the scale vector, programmer can write the
scale changing objective-C code in their controller method
easily like below.

[scc interpret:@"~seq=phrygian;"];

The test was in success modifying the modal change in real-
time on latest iOS environment by touch interaction onto a
standard UIView object.

4. iSuperColliderKit
Following the success of this test, we proceeded in further
functionality separation, refactoring and project tree ar-
rangement. iSuperColliderKit is oriented more useful from
native API version. By using that, iOS programmers can
send the SuperCollider code fragments from Swift language.
It has been opened on GitHub[9].

4.1 Content

iSuperColliderKit encloses two Xcode projects in ‘project’
folder, iSCKit and iSCApp. iSCKit generates three static
libraries for building an iOS application using SuperCollider
as a sound engine. iSCApp is a sample project which shows
the usage of this toolkit in objective-C language.

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 236 –

Figure 5. Project trees of iSCKit and iSCApp.

4.2 Usage of this packages

4.2.1 iSCKit

When iSCKit.xcodeproj runs, it generates 'libsndfile', 'lib-
scsynth' and 'libiSCKit' on the projects ‘lib’ directory. Ap-
plication programmers can easily develop by using these
files including SuperCollider technology. When developers
make their own iOS application including SuperCollider as
a sound engine, the 3 libraries have to put on the ‘lib’ folder
in their Xcode project folders or set the build settings ap-
propriately according to the instruction in the ‘READ-
ME.md’.

4.2.2 iSCApp

This project is sample app using iSCKit. It is done getting
ready to use iSCKit. Launching iSCApp.xcodeproj need to
already generated 'libsndfile', 'libscsynth' and 'libiSCKit'. If
this process succeeds, iSCKit is available.

4.3 Sending SC code fragments from Swift
The usage on Swift sending SuperCollider code fragment is
the same of objective-C way. The codes go through the ‘in-
terpret’ method on iSCController object. However, it is fur-
ther simpler. When programmers use this from Swift, the
example is in the below.

// initialization of the iSCController object
let scc = iSCController.sharedInstance()
scc.setup()

//call the interpret method and send some string
scc.interpretC("s.boot")

When developers make their own application from scratch,
they can use the 3 libraries ‘libsndfile’, ‘libscsynth’ and
‘libiSCKit’ by the following procedure.
Ø Import “iSCKit.h”
Ø Set the Header Path to ‘iSCKit’ folder in the down-

loaded iSCKit project.
Ø Set the Library Path to ‘lib’ folder in the downloaded

iSCKit project in which have been built in advance.
Ø Set *’SC_IPHONE’* on ‘Debug’ and *SC_IPHONE

NDEBUG* on ‘Release’ on ‘PreProcessor Macros’

Ø Add *’-lsndfile -lscsynth -liSCKit’*
Ø Copy and add *’SCClassLibrary’* in your project

folder
Ø Add the 10 Frameworks below

‘CoreMIDI’,’UIKit’,’Accelerate’,’MediaPlayer’,
’CFNetwork’, ‘AVFoundation’, ‘CoreGraphics’,
’CoreFoundation’,’AudioToolbox’, and ’Foundation’.

5. CONCLUSION
We described the toolkit named iSuperColliderKit for iOS
for developing native iOS7 or later applications using an
internal SuperCollider server as a sound engine. It enable
that the native iOS visual objects built by objective-C, even
Swift, send to the internal SuperCollider server with any
user interaction events.

For future work, we will explore not only the relation
between musical elements and characteristic smartphone
user-action but the true adaptive music or smartphone im-
provisation system applying the research achievements of
algorithmic composition and music analysis.

6. REFERENCES
[1] Csound for iOS.

http://www.csounds.com/shop/csound-for-ios/

[2] N. J. Bryan, J. Herrera, et al., “MoMu : A Mobile
Music Toolkit”, Proceedings of the International
Conference on New Interfaces for Musical Expression,
Sydney, 2010, pp. 174-177.

[3] AudioKit. http://audiokit.io/

[4] J. McCartney, “SuperCollider, a New Real Time
Synthesis Language”, Proceedings of the 1996
International Computer Music Conference, Hong Kong,
1996, pp. 257-258.

[5] Sonic pi. http://sonic-pi.net/

[6] S. Aaron, A. F. Blackwell, “From sonic Pi to overtone:
creative musical experiences with domain-specific and
functional languages”, Proceeding FARM '13
Proceedings of the first ACM SIGPLAN workshop on
Functional art, music, modeling & design, ????, 2013,
pp. 35-46.

[7] SuperCollider for iOS Sourceforge git repository
git://supercollider.git.sourceforge.net/gitroot/supercolli
der/supercollider isc

[8] supercollider_ios.
https://github.com/wdkk/supercollider_iOS

[9] iSuperColliderKit.
https://github.com/wdkk/iSuperColliderKit

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 237 –

