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and openNI for sensor communications. The SOM data
file is a small text file containing a list of songs with their
accompanying metadata and SOM position.

6. FUTURE WORK AND SUMMARY

Future work will involve performing user evaluations that
could help to answer questions about browsing music with
this system. Three-dimensional SOMs have the possibil-
ity to represent richer topological spaces, reflecting more
accurately the relationship between songs in our music
collection. Furthermore, using 3D gesture-based controllers
to navigate a 3D space probably offer advantages over us-
ing a joystick or other 2D controllers. However, with-
out the proper evaluation provided by a user study any
claims we can make are purely speculative. Further eval-
uation of this system is required, in which the time it takes
to complete tasks of browsing for certain music will be
measured. Quantitative comparisons between 3D and 2D
SOMs can also be performed, where the distance between
similar songs are compared for the same set of songs.

The self-organized map has become a popular method
for organizing songs based on similarity. This type of mu-
sic browser not only reflects the way that how we interact
with music is changing, it also reflects how our interaction
with technology and computers is changing. By expand-
ing previous work with self-organized music collections
and adding a third dimension, it is possible to convey ad-
ditional information and browse extra songs. Addition-
ally, navigating this type of map is a good example of the
advantages 3D gestural sensors like the radiodrum and the
Kinect have in specific control contexts and the more nat-
ural interaction they enable.
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ABSTRACT

One of the most important challenges for computing 
over the next decade is discovering ways to augment 
and extend human control over ever more powerful, 
complex, and numerous devices and software systems. 
New high-dimensional input devices and control 
systems provide these affordances, but require extensive 
practice and learning on the part of the user. This paper 
describes a system created to leverage existing human 
expertise with a complex, highly dimensional interface, 
in the form of a trained violinist and violin. A machine 
listening model is employed to provide the musician and 
user with direct control over a complex simulation 
running on a high-performance computing system.

1. INTRODUCTION

As software systems and cloud computing provide more 
and more powerful, complex computing tools it 
becomes necessary to discover new ways of augmenting 
and extending human control while retaining human 
judgment and analysis of complex situations. Popular 
computer-human interfaces for personal computing, 
such as WIMP elements and hardware, are typically 
designed generically to support as many different users 
and uses as possible. Today, physical computer 
interactions are becoming increasingly 
multidimensional, as advances in technology and 
understanding encourage movement away from 
conventional human interface devices towards hands-
free gestural controllers. Additionally, developments in 
physical computer interaction systems, such as 
contemporary game console controllers and the newest 
3D imaging cameras, are enabling new, specialized 
modes of interaction. Although these systems may not 
be as general, versatile, or approachable, the rewards in 
terms of capabilities in specific domains can outweigh 
the requirements of expertise and loss of generality. 
Given a user’s willingness to practice and learn the new 
interface, such a system can give the user new levels of 
control and power.

Physical devices with extreme learning curves have 
long been in use, and we take the musical instrument, 
the violin, as a first class example. While being 
notoriously difficult to learn, the violin presents vast 
possibilities for sound creation and musical expression 
in the hands of a practiced master, audibly and visibly 
demonstrating the human capacity for using complex 

interfaces successfully. The typical professional 
musician today will spend upwards of one thousand 
hours per annum developing and maintaining their 
proficiency on the instrument. We then ask: what could 
this level of dedication lead to if the target was a 
computational control interface?

Another dominant trend in computing is increasing 
power and capabilities for complex data processing, data 
mining, simulations, and visualizations. This is 
especially apparent in high performance computing 
(HPC), with the recent completion and activation of 
several petaFLOP (1018 floating-point-operations-per-
second) capable systems. In such a setting a user with 
extensive practice and skill could become a virtuoso of 
the computer, capable of transforming and manipulating 
vast data sets in novel ways, enabling new modalities of 
operation and knowledge discovery.

To explore this possibility we describe a novel 
interface to enable high-dimensional, continuous system 
input and control, leveraging the very precise gestural 
manipulations of professional musicians. This new 
interface builds on machine listening techniques, 
applying unsupervised machine learning algorithms to 
develop a machine model of expert human music 
listening. This setup presupposes expert knowledge of a 
musical instrument on the part of the user, effectively 
transforming the acoustic instrument into a digital 
control device. The result is the concurrent, precise, and 
direct manipulation of many independent parameters of 
a complex data simulation running on a supercomputer, 
employing the violin as a sophisticated, multimodal, 
tangible interface.

2. MOTIVATION

As available computing power and network bandwidth 
increase it gradually becomes possible to transform 
practices of high-performance computing and scientific 
data processing from offline, batch oriented modes to 
real-time interactive data mining and simulation. 
Interactive high performance computing is a growing 
area of research, demanding new systems and solutions 
[6]. The extreme level of sophistication that these 
interactive supercomputer jobs can achieve suggests the 
need for highly dimensional, tangible or gestural control 
interfaces in order to fully exploit the available 
computing power. To date, little work has been 
published in this direction.
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Interfaces based on expert use of existing physical 
devices, and which are worthy of extreme practice must 
add as little additional cognitive load as possible. 
Towards this end it is desirable to develop an automated 
understanding of the current practice (i.e. making 
music), identifying the preexisting repertoire of 
gestures. Machine learning algorithms have proven 
successful in this domain, categorizing musical and 
physical gestures with sufficient accuracy and flexibility 
[5, 6]. Additionally, some approaches enable tracking of 
gestural qualities and styles [4] built of more or less 
subtle nuances and variations in execution. These 
elements of expressivity contain additional information 
that can be leveraged as a control source, potentially 
giving the computer access to a type of emotional 
understanding of the input.

3. MUSICAL STRUCTURE

Despite the many parallels that exist between spoken 
language and music, each domain presents distinctly 
different problems for machine listening. While 
language is highly semantic and denotative, music is 
more referential and connotative. Composers and 
theorists of classical musics typically describe structures 
and developments in music through relational patterns in 
the musical material (such as the return of a melody or a 
modulation to a new tonal area). These relationships are 
understood to give meaning, especially when realized 
through the expressive performance of a trained 
musician.

In this context we generically understand “gesture” 
to denote “a movement of the body that contains 
information” [7], which may be actuated as sound 
through the use of a musical instrument. This aural 
product is understood as a sonic or musical gesture (a 
movement of sound that contains information). These 
gestures in turn develop meaning through their ordering 
in a musical work or improvisation and the inter- 
gestural relationships they present.

Gesture parsing is accomplished through the employ 
of an online, unsupervised machine learning algorithm, 
Adaptive Resonance Theory (ART, [2], applied to music 
[5, 9, 10]). The ART model is a competitive neural 
network, in which all the nodes of the network compete 
for the best fit, with the winner adapting and receiving 
reinforcement. Effectively, each input sample is 
compared to a library of category exemplars and a 
simple distance measure is employed to find the best fit. 
If the match is within a specified distance tolerance the 
known category incorporates the new input (a smoothed 
filter of the current state and the new input). However, if 
no category match is found then the new input is taken 
as the initial state for a new category. In this way the 
input feature space is sequentially partitioned and 

mapped into categories that are germane to the given 
input sequence, and the granularity of category 
distinction can be easily configured for a given input set. 
ART networks are typically trained on-the-fly without 
employing any preselected training data sets.

4. ARCHITECTURE

The platform employed for the prototype is a distributed 
system comprising a supercomputer in combination with 
consumer grade desktop computers (fig. 2). The Abe 
supercomputer, housed at the National Center for 
Supercomputing Applications (NCSA), was used for the 
simulation core.  A Mac Pro desktop computer was used 
to process and analyze the sound input and display the 
state of the simulation.

The system being controlled by the musician in this 
prototype was an agent based flocking simulation, 
modeling behaviors observed in nature as exhibited by 
herding and schooling creatures [11]. The non-
centralized, particle nature of the algorithm is a distinct 
computational advantage, making it readily 
parallelizable and scalable. Each simulated entity 
maintains its own state and behavioral coefficients and 
parameters, updating its properties based on its 
immediately proximal neighboring entities with no 
concurrent dependencies in the update functions. As 
more entities are added the complexity of the algorithm 
proceeds as O(n2), but the update calculations are shared 
uniformly across all available CPUs. [8]  found 
unoptimized performance on the order of 50 updates per 
second with 10,000 entities on 128 CPUs, which was 
sufficient for proof of concept. We refer the reader to [8] 
for further details of the simulation implementation.

 The data set from the simulation is rendered as a 
projected 3D visualization, displaying the flocking 
entities as uniform abstract shapes, rotating and moving 
dynamically in a virtual environment. Displaying the 
modeled behavior of the entities in a fashion analogous 
to flocking creatures observed in the physical world is a 
natural mapping given the nature of the simulation 
algorithm.

Figure 2: System architecture overview (gray stages 
indicate network transmissions).

 

Figure 3: Detail of machine learning stages from fig. 2.

4.1. Sound Analysis

We take as our guiding premise the exploitation of 
existing skills possessed by trained musicians (as 
proposed by [7]). In order to fully leverage the sonic 
nuances presented by a given musician the computer 
must listen to particular components of the sound, and 
thus understand sound and music in a fashion that 
parallels human audition, especially that of the 
particular user.

Audio input from the violin is first passed through 
an analog-to-digital converter (ADC, see fig. 2), and 
then a Fast-Fourier Transform is performed, which 
enables the extraction of the target audio descriptors. 
These are encoded into a modeled short-term memory 
which is used as the input for the ART. The ART 
dynamically trains a multi-layer perceptron (MLP) 
neural network in order to affect the actual non-linear 
mapping process [10](shown in fig. 3). When the ART 
detects a new category it retrains the MLP in parallel 
and on-the-fly, allowing the MLP to continue mapping 
inputs to outputs uninterrupted.

The following descriptors are currently implemented 
in our system: Loudness, Dynamic movement, Spectral 
centroid, Noisiness, Pitch, Interval, Rate of pulse, and 
Temporal movement. Once sampled, the descriptors are 
assembled in a feature vector which is used as the input 
for the ART network. 

Pitch and interval are treated with an additional step 
due to their privileged nature in defining musical shape. 
Western classical music typically employs a twelve tone 
equal-tempered scale for the mapping of the pitch-
frequency space. This scale pattern is based on the 
notion of octave equivalence classes (i.e. every doubling 
of the pitch frequency is under- stood as the same scale 
degree but with different pitch “register”), employing 
twelve tokens to represent the twelve distinct scale 
degrees. While the pitch classes may be ordered in an 
ascending sequence their perceptual relationships are 
much more complex, serving to define notions of 
harmony, consonance, and dissonance independently 
from their order position.

The perception of melody is strongly based on the 
temporal order of pitches and the derived interval 
structure. To enable the comparison of melodic 
sequences we transform the input pitch class sequence 
into a recency vector through the process of spatial 
encoding [5]. This turns an ordered sequence of tokens 
into a regularly dimensioned vector where the position 
of the token in the sequence is encoded as a relative 
weight. The same spatial encoding is also applied to the 
interval sequence.

The ART layer now compares this input vector to 
known exemplars, describing the input in terms of 
match quality. While a single categorization is possible, 
we believe the match strength with all known exemplars 
more closely mimics human understanding of music. 
The resonance with each category provides a rich 
description of the current input and its structural 
location in the musical piece. For example, as a melody 
is repeated at the start of a piece it becomes a defined 
musical entity, for a given listener. Later any returns of 
that melody can be understood by the listener. Also, any 
variations in the returning melody can be described as 
well, relating the new modifications to other melodies 
that were exposed during the course of the work. While 
concrete, semantic understanding is not possible through 
the ART, access to the relative comparative value of 
melodic fragments is provided, paralleling some aspects 
of human understanding of music.

5. DISCUSSION

Testing of this system was conducted with one of the 
authors as a participatory designer and target expert 
user. Evaluation was carried out continuously during 
design and implementation, ensuring that the system 
met targets of usability, functionality, and accessibility 
to a trained musician. The resulting prototype enables 
clear demonstration of the musical control scheme, 
allowing the musician to make easily perceptive 
manipulations of the data simulation.

While the ultimate goal is a transparent leveraging 
of musical playing, the current system places a not 
insignificant level of cognitive load on the user. 
Musicians, especially when improvising, privilege their 
intuitions and a sense of emotional communication [1]. 
However, operating our system requires a different 
mental orientation that forces the musical user to form a 
very conscious memory of what they played during the 
session. Unlike most user interfaces designed today our 
system does not have a preconception of what input 
commands will be employed (as long as they are sonic 
in nature). This requires that the user define and learn 
their own control scheme. Since the ART network is 
learning on-the-fly, returning to the same musical place 
(in the sonic feature space) is necessary to reproduce the 
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Interfaces based on expert use of existing physical 
devices, and which are worthy of extreme practice must 
add as little additional cognitive load as possible. 
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modulation to a new tonal area). These relationships are 
understood to give meaning, especially when realized 
through the expressive performance of a trained 
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In this context we generically understand “gesture” 
to denote “a movement of the body that contains 
information” [7], which may be actuated as sound 
through the use of a musical instrument. This aural 
product is understood as a sonic or musical gesture (a 
movement of sound that contains information). These 
gestures in turn develop meaning through their ordering 
in a musical work or improvisation and the inter- 
gestural relationships they present.

Gesture parsing is accomplished through the employ 
of an online, unsupervised machine learning algorithm, 
Adaptive Resonance Theory (ART, [2], applied to music 
[5, 9, 10]). The ART model is a competitive neural 
network, in which all the nodes of the network compete 
for the best fit, with the winner adapting and receiving 
reinforcement. Effectively, each input sample is 
compared to a library of category exemplars and a 
simple distance measure is employed to find the best fit. 
If the match is within a specified distance tolerance the 
known category incorporates the new input (a smoothed 
filter of the current state and the new input). However, if 
no category match is found then the new input is taken 
as the initial state for a new category. In this way the 
input feature space is sequentially partitioned and 
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ART networks are typically trained on-the-fly without 
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simulation core.  A Mac Pro desktop computer was used 
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state of the simulation.

The system being controlled by the musician in this 
prototype was an agent based flocking simulation, 
modeling behaviors observed in nature as exhibited by 
herding and schooling creatures [11]. The non-
centralized, particle nature of the algorithm is a distinct 
computational advantage, making it readily 
parallelizable and scalable. Each simulated entity 
maintains its own state and behavioral coefficients and 
parameters, updating its properties based on its 
immediately proximal neighboring entities with no 
concurrent dependencies in the update functions. As 
more entities are added the complexity of the algorithm 
proceeds as O(n2), but the update calculations are shared 
uniformly across all available CPUs. [8]  found 
unoptimized performance on the order of 50 updates per 
second with 10,000 entities on 128 CPUs, which was 
sufficient for proof of concept. We refer the reader to [8] 
for further details of the simulation implementation.
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musical entity, for a given listener. Later any returns of 
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that were exposed during the course of the work. While 
concrete, semantic understanding is not possible through 
the ART, access to the relative comparative value of 
melodic fragments is provided, paralleling some aspects 
of human understanding of music.
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Testing of this system was conducted with one of the 
authors as a participatory designer and target expert 
user. Evaluation was carried out continuously during 
design and implementation, ensuring that the system 
met targets of usability, functionality, and accessibility 
to a trained musician. The resulting prototype enables 
clear demonstration of the musical control scheme, 
allowing the musician to make easily perceptive 
manipulations of the data simulation.

While the ultimate goal is a transparent leveraging 
of musical playing, the current system places a not 
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intuitions and a sense of emotional communication [1]. 
However, operating our system requires a different 
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same outcome. On many occasions this proved difficult 
for the user, who struggled to recall their earlier 
improvisation.

Most of the observed difficulties in the use of the 
system centered around issues of intent and conceptual 
mapping. The complexity and adaptivity of the machine 
learning requires significant cognitive resources on the 
part of the user, who typically desires to exert precise 
control over the simulation. However, this is dependent 
on a precise understanding of the analyzed inputs (pitch, 
brightness, noisiness, etc.) which often are not heard 
focally by the player. This is an inherent challenge of the 
design, as the system is intended to respond intelligently 
and naturally, without requiring a strong cognitive 
model on the player’s part. When the musician was able 
to ‘let go’ and focus on the music, creating a compelling 
sequence of sonic events, the control of the system 
become much more facile and transparent. This typically 
lead to the most rewarding experiences.

The primary user found our system promising and 
exciting overall. The above difficulties not withstanding, 
we were able to afford control of a complex, dynamic 
simulation for an expertly trained musician. Even failure 
in the control was mostly undetectable by any except the 
user, who can recognize a mismatch between intent and 
result. Additionally, this system leverages the intrinsic 
value and reward found in the actions employed in this 
control (i.e. making music), which could encourage 
sustained use of such designs.

While the information extraction provided by the 
ART network is very promising, employing this data in 
an appropriate and meaningful fashion remains a 
challenge. Ideally this mapping will be constructed 
dynamically and intelligently, serving to reduce the 
aforementioned cognitive load by making apparently 
natural or intuitive choices. This might be accomplished 
by associating some sense of affect with a given input 
mapping, such as by tying bold, heroic melodies to 
strong, quick changes in the simulation space, and 
mapping gentle, melancholic melodies to subtle, 
continuous movements (of course these mappings would 
be crafted uniquely for each given user, as descriptions 
of musical affect can vary dramatically from individual 
to individual).

We have shown that a complex data simulation, 
based on scientific observations, running on a 
supercomputer, can be dynamically controlled in real-
time by a trained musician, demonstrating the potential 
for highly specialized, multidimensional expert 
interfaces. The prototype evaluates well in terms of 
control precision and rate of interaction, but demands a 
high level of extra-musical awareness and focus. 
Someday systems affording richly expert control will be 
prevalent and anticipating these situations can lead to 

the design of the best natural interactions possible, 
allowing users to learn new interfaces in the same way a 
violinist learns to play the violin.
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ABSTRACT 

"SurrSound" is an interactive spatial sound installation, 
this title is choosen to represent both the meaning of 
surround and sound. The appearance of this installation 
is very similar to a big fruit hanging upside down on a 
tree in the jungle. It allows user to control the directions 
of sound moving around the space surrounded by 16 
loudspeakers; The sound could either be the pre-
recorded samples or live recorded segments by users. To 
record the voice in realtime, users need to squeeze  the 
ball to trigger the bend sensor to turn on the mini 
mircophone. "SurrSound" consists of 16 balls, each of 
them made by four parts: The joystick for  the control of 
the sound directions,the mini microphone is for 
recording, the bend sensorfor switch, and the ADXL335 
three axis accelerometer for modulating the voice. In 
this installation, sixteen loudspeakers are used to fill the 
space in order to simulate the natural situation of sound 
moving in our environment or to offer a brilliant sound 
spatilization system for acousmatic music performance. 
The "SurrSound" enables user to manipulate  their voice 
interactively of user spatilization. The presented 
installation also aims to give users the experience of 
being surrounded by the fascinating aural illusions.  

Keyword: Interactive spatial sound installation, 
Max/MSP, Arduino, sixteen speaker, sphere, sequencer 

1. CREATION IDEA 

In the past, the young aborigines, dwellers in the 
mountain area  in Taiwan, used to sing or speak to their 
lovers from far away . Whilesinging or speaking to each 
other, the distance weakens the message delivered. Such 
romantic events of the young aborigines became the 
inspiration of this installation.  The basic idea was to 
create a certain type of device to help them record and 
transmit their love message to each other. This idea 
could be extended to multi-channel environments, when 
the sounds come everywhere. The feeling that you are 
actually in the jungle or among the mountains became 
the central idea of "SurrSound". 

2. THE SPATIAL AND DEVICES 

We used the iron bars to make an iron stand, then we 
managed to construct a frame in the room (Figure 1.). To 
concentrate the sounds to the middle of the room, 16 
Genelec 8030A speakers were used and  arrangedon the 
top of the iron stand with equal spaces (Figure 2.). The 
sound interface used was RME FIREFACE 8002 with 

two ULTRAGAIN PRO-8 DIGITAL ADA8000, and the 
computer and speakers were connected via the cable 
hubs."SurrSound" was expected to be intergrated into 
the space, therefore,  sixteen loudspeakers  were set up 
in the room to make the surrounding sound field. To 
further increase the interactivity of "SurrSound", sixteen 
balls average distributed around the space were also 
constructed, giving people the feeling of staying in the 
nature environment. [4] 

Figure 3. The situation of the  frame.The schematic of 
16 speakers placed.

Figure 4. The schematic of 16 speakers placed. 

3. IMPLEMENT METHODS AND TECHNIQUES 

3.1. Interactive Design 

Our installation have two modes, one is Static mode and 
the other is interactive mode. When people press down 
the ball, the interactive mode will be triggered. 




