

ANALYTICAL AND COMPOSITIONAL APPLICATIONS

OF A NETWORK-BASED SCALE MODEL IN MUSIC21

Christopher Ariza Michael Scott Cuthbert

Music and Theater Arts Section

Massachusetts Institute of Technology

ABSTRACT

Like many artifacts of music notation and theory, musi-

cal scales are easy to represent in software for simple

cases, but rapidly become very difficult for more com-

plex cases (e.g., melodic minor scale, Indian ragas, or

microtonal scales). The BoundIntervalNetwork and

Scale objects of the open-source music21 toolkit provide

new and powerful tools for abstracting and manipulating

scales as used in actual compositions. Using a novel

application of a constrained node-and-edge graph

model, with intervals on edges and probability weight-

ings on nodes, music21 interval networks aid analysts in

searching and annotating otherwise difficult-to-find

moments in musical pieces (regardless of representa-

tional encoding) and can help composers in writing new

pieces that conform to complex, asymmetrical, non-

octave-bound, and even non-deterministic scalar mod-

els. This paper introduces the low-level BoundInterval-

Network and high-level Scale objects, and, through nu-

merous examples both in Python code and musical nota-

tion, demonstrates their usage and potential.

1. INTRODUCTION

Musical scales have more than theoretical or pedagogi-

cal value: they offer important resources for composers

and tools for analysts. Even those scales that are more

often found in theory texts than in actual pieces of music

add to our knowledge of musical structures. Software

tools for modeling, analyzing, and creating music need

good representations of scales. At first, a scale might

seem like a concept that could be modeled simply, such

as with an ordered list of pitches. Yet, like many musi-

cal structures deployed in software for musical analysis,

representation, and composition, the simplest concepts

are insufficient for flexible implementations. For exam-

ple, common scale-types, such as the melodic minor,

have different pitches when ascending versus descend-

ing; some scale-types, such as those derived from Indian

musical traditions, may have both non-linear contours

and repeated notes in their distinctive ascending and

descending forms; scales that do not repeat at the octave

pose particular difficulties in encoding their upper and

lower boundaries.

A list of pitches, represented symbolically or other-

wise, will thus not accommodate the true diversity of

scale forms, but this problem has not prevented such

encodings from being the norm. There are numerous

examples of such shallow encodings. For example,

WolframTones [12], a web-based music generator em-

ploying cellular automata, claims to offer “all standard

named scales, in all major standard musical traditions.”

Yet, these scales are explicitly specified as subsets of

twelve semitones (pitch classes) and are encoded as

twelve-bit binary strings. While the system offers over

300 named scale forms, the melodic minor (the most

common form of minor in all common-practice Western

music) is not available; the encodings of numerous In-

dian-derived scales called raga, mela, or that, all are

fixed within one octave and do not distinguish between

ascending or descending forms; and, of course, microto-

nal and non-octave repeating scales are not represented.

This binary representation is illustrative of a common

shortcoming in describing and encoding musical scales.

In Gareth Loys’s extensive Musimathics, for example,

scales are defined simply as “an ordered set of pitches,

together with a formula for specifying their frequencies”

[5].

Scala, an extensive system written in Ada for explor-

ing and deploying (as tuning tables for a wide variety of

software packages) non-equal-tempered and microtonal

scales, tunings, and temperaments, recognizes over

1,200 musical modes and features an archive of more

than 3,900 scales. Modes, however, are defined as an

ordered list of ascending scale degrees [7]. The Scala

scale file format similarly represents scales as a single,

fixed list of cent or ratio offsets above an implied tonic

[8]. Such a representation does not allow for unique

ascending or descending pathways, nor defined spelling

of quarter-tone inflections. Though it is a broadly sup-

ported format and permits great specification of tuning,

Scala’s representation is, in some ways, as structurally

limited as WolframTones’s binary arrays.

A list of pitches can, however, be generalized into a

list of interval spacings, describing not just one pitch

formation but all pitch formations. Interval spacings can

then be generalized to use sophisticated interval objects,

providing proper enharmonic spellings under transposi-

tion and microtonal spacings. Finally, a list of interval

objects can be generalized as a directed network, where

nodes are undefined pitch placeholders and edges are

intervals. Such a model permits multiple pathways in

ascent or descent, pathway branching, and weighted or

probabilistically-selected pathways. This new model of

the scale, based on an object called the BoundInterval-

Network, is the focus of this paper.

With this model, a scale, either as an abstract inter-

val network (such as a melodic-minor scale) or as a con-

crete pitch collection (such as the G melodic-minor

scale from D4 to D6), can be created and deployed.

Pitches can be obtained from the scale by specifying a

degree, degrees can be obtained from a pitch, and arbi-

trary pitch collections can be used to derive one or more

new scales that fit this collection. Scales can be trans-

posed, can be walked with variable step sizes, and can

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

701

be used to create new concrete scales based on any scale

degree specification. No other software system has of-

fered such a comprehensive model of scale formation.

This powerful model and interface, implemented in

the BoundIntervalNetwork and associated Scale objects,

fully models diatonic scales and modes, harmonic and

melodic minor scales, chromatic, pentatonic, octatonic,

and whole tone scales, non-octave repeating pitch scales

such as the sieves of Iannis Xenakis [13], microtonal

scales such as Harry Partch’s 43-tone scale [9], and

scales derived from Indian raga that define both contour

and ascending and descending formations. Further, any

scale defined in the Scala scale file format, and an scale

within the Scala archive of over 3,900 scales, can be

quickly deployed.

This new model is implemented in Python as part of

the music21 toolkit, an open-source, cross-platform

framework written in Python for computer-aided musi-

cology [2]. (See mit.edu/music21 for downloads and

documentation.). This paper will describe the object

design and interface, and demonstrate applications in

automated analysis and algorithmic composition.

2. OBJECT HIERARCHIES AND

COMPOSITIONS

To inform the discussion that follows, we first pre-

sent the basic definitions of the objects, their hierar-

chies, and their compositions. The BoundIntervalNet-

work is the core object for all scale processing. A

BoundIntervalNetwork is composed of three or more

Node objects and two or more Edge objects. As a low-

level object, BoundIntervalNetwork objects do not need

to be used by users who only wish to work with higher-

level scale objects.

The Scale is a base class providing common re-

sources to both AbstractScale and ConcreteScale ob-

jects. AbstractScales are composed of one (or possibly

more) BoundIntervalNetworks and expose the BoundIn-

tervalNetwork interface to ConcreteScales. Ab-

stractScales represent a type of scale independent of

specific pitches, such as all major scales (as opposed to,

say, the D-major scale); they are responsible for defin-

ing the meaning of various scale degrees, configuring

the BoundIntervalNetwork on instantiation, and passing

scale-type parameters to the BoundIntervalNetwork.

ConcreteScales, on the other hand, represent a type of

scale with a specific pitch collection; they are responsi-

ble for assigning a pitch value to a scale degree, and, by

passing this assignment through the AbstractScale and

BoundIntervalNetwork, providing realized scale pitches.

Figure 1 illustrates the composition of these objects.

Closed diamonds are object compositions and suggest

life-time object responsibility.

The ConcreteScale and its subclasses provide the

main public interface for working with Scales. Each

ConcreteScale contains one AbstractScale instance. For

convenience, the same AbstractScale class may be used

by multiple ConcreteScale classes (this relationship is

not represented in Figure 1). For example, an instance of

the AbstractDiatonicScale is used inside of MajorScale,

MinorScale, LydianScale, and related diatonic scales. In

some cases, a unique AbstractScale class is required for

a single ConcreteScale, such as the AbstractMelodic-

MinorScale used in the concrete MelodicMinorScale

class.

Figure 1. Object composition of Scale-related classes.

Figure 2 summarizes the object inheritance hierarchy

of Scale subclasses, and provides a small sampling of

ConcreteScale and AbstractScale subclasses. Open ar-

rows point to parent classes inherited by subclasses.

Figure 2. Object inheritance and example subclasses of

ConcreteScale and AbstractScale.

3. THE BOUNDINTERVALNETWORK

OBJECT

The BoundIntervalNetwork is a limited or bound form

of a directed graph. Specifically, the class models a di-

rected graph where each Edge encapsulates a music21

Interval object (defining both the size and direction of a

potential pitch transposition with correct enharmonic

spelling) and is associated with a pathway direction (as-

cending, descending, or bi-directional); each Node rep-

resents an unrealized pitch, is defined with an integer

degree value, and has a numerical weight representing

the probability of this path being taken (as used for non-

deterministic scales). Each graph also has two nodes

defined as termini (low and high) that function as wrap-

ping, cyclical boundaries.

While a free-form interval network might permit any

possible connection, the bound network requires (1) at

least one ascending and one descending pathway con-

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

702

necting both termini and (2) that it must be possible for

each node to be part of a pathway that connects both

termini. Future implementation of the IntervalNetwork

base class may support free-form interval networks in

pitch class space, such as those described in Johnson

[3], alternative formulations found in Lewin [4], or pitch

Tonnetz such as those demonstrated by Leonhard Euler

as early as 1739.

In this model, each Node represents a pitch but does

not contain a specific Pitch object. When a Pitch object

is associated with a Node, new pitches in the scale are

realized by navigating the pathway in either ascending

or descending directions (though not necessary ascend-

ing or descending pitch space values, as in the case of

scales that are considered ascending, yet curve back on

themselves along the way, such as some ragas or scales

described in Slonimsky [10]). As each Edge defines an

Interval, the next Node in the pathway is realized by

transposing the source pitch. This transposition may be

up or down in pitch space and is dependent on the sup-

plied Interval definition. When realizing an ascending

pathway, unaltered Edge Intervals are used for transpo-

sition; when realizing a descending pathway, Edge In-

tervals are used for transposition in reverse (e.g., an

ascending minor second in ascent, a descending minor

second in descent).

BoundIntervalNetworks are cyclical, though their

realized pitch space collections may be infinite. When a

pathway arrives at a terminus, the realized pitch is treat-

ed as a pitch in the alternate terminus, and the pathway

continues. For example, if a pitch is realized for the high

terminus, the next edge is found by treating the just-

realized pitch as a pitch for the low terminus. In this

way the termini nodes are essentially the same,

wrapping around in the graph. The realized pitch se-

quence, however, need not wrap, and often forms an

infinite sequence of pitch space values. While a theo-

retical graph might easily represent the two termini as

one node, this musically-informed design uses two dis-

tinct nodes to better represent conventional models of

scales.

The most relevant functionality of BoundInterval-

Networks is exposed in the interface of the ConcreteS-

cale, which will be discussed later. Understanding a few

attributes and methods of the BoundIntervalNetwork,

however, will clarify the design. Each BoundInterval-

Network has two stored Boolean values that declare its

basic structural characteristics: the deterministic at-

tribute declares whether every ascending and descend-

ing pathway for a given Pitch-Node assignment will

always be the same; the octaveRepeating attribute de-

clares whether all realized pitches repeat for each oc-

tave. The realize() method, given a single Pitch, a

Node to which that Pitch is assigned to, a pathway di-

rection, and a Pitch range, navigates a pathway through

the network and returns the resultant Pitches, paired

with references to the specific Nodes used in realization.

For deterministic BoundIntervalNetworks, pitch seg-

ments obtained from realize() are cached and reused

when possible.

While interval spacings drive the formation of

scales, it is useful to apply interval transformations to

resultant Pitch Nodes after Edge-derived transpositions.

An alteredDegrees dictionary accommodates this

functionality. It is a data structure, stored in Ab-

stractScales, that is passed to BoundIntervalNetworks

whenever pitches need to be realized. This approach

permits two-levels of design: (1) the BoundIntervalNet-

work structure, based on pathways of intervals, and (2)

the AbstractScale alteredDegrees dictionary, based on

transforming realized Nodes. A complex AbstractScale

might, for example, adjust the alteredDegrees diction-

ary for stochastic variation or contextual pitch adjust-

ments. An application of the alteredDegrees diction-

ary is demonstrated below as the HarmonicMinorScale.

The following figures illustrate reduced, hypotheti-

cal BoundIntervalNetwork graph structures, and de-

scribe archetypical formations. In all cases, Nodes la-

beled a and b represent the low and high termini respec-

tively. Nodes at parallel vertical positions share the

same degree value. In all cases, the number of nodes and

edges can be increased to accommodate more intervals.

While graph structures define scales as conjunct move-

ments, any skip or disjunct motion is possible.

Figure 3 illustrates the most common types of de-

terministic IntervalNetworks. These structures may or

may not be octave repeating. Figure 3a is a simple bi-

directional structure, the type of scale most software

models. Any number of Nodes may intervene between

the termini. For any defined degree, there is only one

Node available. Figure 3b has independent ascending

and descending pathways. Between the termini there are

two nodes for each degree. Requests for a pitch based

on a degree are resolved depending on a provided path-

way direction. Figure 3b could represent scale degrees

five to eight of the melodic minor scale. Figure 3c has a

bidirectional segment and an independent pathway seg-

ment. An expanded structure, similar to this one, is used

to represent the entire melodic minor scale as presented

below. Figures 3b and 3c represent scale archetypes not

available in existing software implementations.

Not all scales and scale-like objects produce the

same Pitch sequence with each realization. Figure 4

illustrates some possibilities for these non-deterministic

BoundIntervalNetworks. Figure 4a, for example, has all

bi-directional Edges, but branches in both ascent and

descent for Node y. The determination of which Node is

realized is determined by weighted random selection of

the possible destination Nodes. Depending on the

weights, for instance, the Pitch in Node x might ascend

to Node y 40% of the time, and directly to Node z 60%

of the time. Figure 4b defines a structure with two as-

cending and two descending pathways. Again, the

choice of Node, when more than one is available for a

given pathway direction, is based on weighted random

selection. When requesting a pitch from a degree that is

associated with more than one Node, weighted random

selection is again used. For example, if Nodes q, r, and s

are all associated with degree 2, and a user requests an

ascending pitch at this degree, one of Node q or r (the

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

703

only nodes on an ascending pathway) will be selected

according to their respective weights. The modeling and

deployment of such scale formations is unique to the

Scale model presented in this paper.

As stated previously, the BoundIntervalNetwork is a

directed graph with some restrictions. Example 5 shows

these restrictions through three examples of networks

that, while potentially modeling interesting pitch collec-

tions, are illegal. Figure 5a has no complete pathway

between the lowest and highest termini. Figure 5b has

an ascending pathway between the termini, but no com-

plete descending pathway; further, Node x is not part of

a complete pathway. Though Figure 5c has both a com-

plete ascending and descending pathway, its Node y is

not part of a complete pathway.

4. ABSTRACTSCALES, CONCRETE–

SCALES, AND THEIR SUBCLASSES

Music21 possesses two mail types of scale classes: (1)

AbstractScales expose interval networks independent of

specific pitch positions, while (2) ConcreteScales local-

ize a scale with specific pitches for each node or scale

degree. While the main role of an AbstractScale is to

configure and expose the interface of the BoundInter-

valNetwork, AbstractScales also provide the additional

functionality of a tonicDegree attribute, which defines

the tonic position as being some numerical degree. The

term tonic here is used loosely, and may refer to a tonic

on scale degree 1 in the tonal sense, or may refer to a

finalis, such as scale degree 4 in chant’s plagal Dorian

mode. AbstractScales can also export any scale in the

Scala file format with the write('scala') or

show('scala') methods and arguments.

The main public interface for working with scales

are the ConcreteScale and its subclasses. A ConcreteS-

cale, on instantiation, is given a music21 Pitch object as

a tonic. Additionally, some ConcreteScale subclasses

may take other parameters to specialize their mode or

formation. To localize the pitch collection, the tonic-

Degree attribute in the AbstractScale is combined with a

stored tonic Pitch in the ConcreteScale. The ConcreteS-

cale provides a wide range of functionality: access to the

stored AbstractScale via the abstract property, a

transpose() method, a method to get a list of Pitches

for any specified pitch range (getPitches()) or as a

Chord (getChord()), methods for obtaining one or more

Pitches from one or more degree values (pitchFrom-

Degree(), pitchesFromScaleDegrees()), a method to

get a degree from a pitch (getScaleDegreeFrom-

Pitch()), a method to get the next pitch in the scale

given another Pitch and a pathway direction (next()),

various methods for comparing this realized scale to

other scales (match(), findMissing()), and methods to

create a new ConcreteScale of this class based on arbi-

trary pitch collections or a pitch assigned to new scale

degree (derive(), deriveByDegree()). Examples of

these methods are given below.

4.1. Modeling all Diatonic Scales and Modes

All diatonic scales and modes (e.g., major, natural mi-

nor, and historical and theoretical diatonic modes) are

made available through pairing of an AbstractDiatonic-

Scale instance and a ConcreteScale subclass. In addition

to the tonicDegree attribute, the AbstractDiatonicScale

class defines a dominantDegree attribute. The sugges-

tion of a dominant is again used loosely, and may refer

to something more like a modal reciting tone. Concrete

diatonic scales are given additional features by inherit-

ing a common ConcreteScale subclass: DiatonicScale.

This class provides methods for all modes such as

getLeadingTone(), getParallelMinor(), get-

ParallelMajor(), getRelativeMinor(), and getRela-

tiveMajor().

The Python example in Figure 6 demonstrates basic

functionality of the MajorScale. The same functionality

is available with all DiatonicScale subclasses.

providing a tonic

gScale = scale.MajorScale('g4')

esScale = scale.MajorScale('e-3') # E-flat

comparing Concrete and Abstract Scales

assert (gScale == esScale) == False

assert (gScale.abstract == esScale.abstract) ==

True

getPitches() with and without arguments

Figure 3. Deterministic BoundIn-

tervalNetwork structures.

Figure 4. Non-deterministic

BoundIntervalNetwork structures.

Figure 5. Directed graphs that can-

not be modeled as BoundInterval-

Networks.

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

704

assert str(gScale.getPitches()) ==

 '[G4, A4, B4, C5, D5, E5, F#5, G5]'

assert str(esScale.getPitches('c2', 'd3')) ==

 '[C2, D2, E-2, F2, G2, A-2, B-2, C3, D3]'

additional functionality as a Chord

assert gScale.getChord().forteClass == '7-35'

given a degree, get a pitch, and vice versa

assert str(gScale.pitchFromDegree(5)) == 'D5'

assert str(esScale.pitchesFromScaleDegrees(

[7,2], 'e-6', 'e-9')) == '[F6, D7, F7, D8, F8,

D9]'

assert esScale.getScaleDegreeFromPitch('d') ==

7

get the next pitch given step directions

match = [pitch.Pitch('g2')]

for dir in [1, 1, 1, -2, 4, -1, 1, 1, 1]:

 # get next pitch based on the last

 match.append(gScale.next(match[-1], dir))

assert str(match), '[G2, A2, B2, C3, A2, E3,

D3, E3, F#3, G3]'

derive new scales based on pitches or degree

print gScale.derive(['c4', 'g4', 'b8', 'f2'])

<music21.scale.MajorScale C major>

print gScale.deriveByDegree(7, 'C#')

<music21.scale.MajorScale D major>

Figure 6. Creating, using, and deriving MajorScale in-

stances.

Modal scale definitions permit access to both relative

major and minor scales, as well as access to appropriate

finalis and reciting-tone values. These attributes are

demonstrated in Figure 7.

ph = scale.PhrygianScale('g4')

assert str(ph.getPitches('F2', 'G3')) ==

 '[F2, G2, A-2, B-2, C3, D3, E-3, F3, G3]'

assert str(ph.getRelativeMajor()) ==

'<music21.scale.MajorScale E- major>'

assert str(ph.getTonic()),

 str(ph.getDominant()) == ('G4', 'D5')

hd = scale.HypodorianScale('a6')

assert str(hd.getDominant()) == 'C7'

Figure 7. Useful methods of the PhrygianScale and

Hypodorian modal scales.

The diatonic scales offer numerous resources for analyz-

ing melodic material found in common-practice func-

tional harmony. Applications include labeling pitch col-

lections by scale degrees and illustrating parallel and

simultaneous key interpretations based on scale seg-

ments. The following example, Figure 8, employs the
music21 analysis.search.findConsecutiveScale()

routine to find and label consecutive, mono-directional

scale segments, consisting of at least five degrees, for

two major scales (G, D), in an excerpt from the first

violin of W. A. Mozart’s String Quartet No. 1. This il-

lustrates extended linear scalar passages and multiple

key interpretations. Such a routine could easily be ex-

tended to systematically find all such passages in an

entire work or corpus, permitting generalizations about

melodic writing and key usage by part, work, period, or

composer.

scGMajor = scale.MajorScale('g4')

scDMajor = scale.MajorScale('d4')

s = corpus.parseWork(

 'mozart/k80/movement1').measures(21,25)

for part in s.parts:

 for sc in [scGMajor, scDMajor]:

 groups = analysis.search.

 findConsecutiveScale(part.flat, sc,

 degreesRequired=5,

 comparisonAttribute='name')

 for group in groups:

 for n in group['stream'].notes:

 n.addLyric('%s^%s' %

 (sc.getTonic().name,

 sc.getScaleDegreeFromPitch(

 n.pitch)))

s['violin i'].show('musicxml')

Figure 8. Searching and labeling consecutive direc-

tional major scale passages.

4.2. Altered Minor Scales

As already suggested, the harmonic and melodic mi-

nor scales pose a challenge to software modeling. As

implemented here, both have concrete subclasses that

are derived from DiatonicScale; each, however, has a

custom AbstractScale subclass.

The harmonic minor scale is best modeled as a natu-

ral minor scale with an altered (raised) seventh degree.

This approach permits shifting a Node rather than alter-

ing the spacing of two Edges, and provides proper en-

harmonic spelling. The AbstractHarmonicMinorScale

class defines a private alteredDegrees dictionary. This

dictionary defines an augmented unison transposition

for scale degree seven. For each call on BoundInterval-

Network’s realize() method, the AbstractHarmonic-

MinorScale passes a reference to this dictionary and,

when necessary, raises the seventh scale degree.

Figure 9 demonstrates basic functionality of the

HarmonicMinorScale, as well notation of a simple me-

lodic line with disjunct melodic motion based on a nu-

merical scale degree specification.

sc1 = scale.HarmonicMinorScale('a3')

assert str(sc1.getPitches()) ==

 '[A3, B3, C4, D4, E4, F4, G#4, A4]'

assert str(sc1.getTonic()),

str(sc1.getDominant()) == ('A3', 'E4')

s = stream.Stream()

for d in [1, 3, 2, 1, 6, 5, 8, 7, 8]:

 s.append(note.Note(sc1.pitchFromDegree(

 d, equateTermini=False), type='eighth'))

s.show()

Figure 9. Employing the HarmonicMinorScale.

While the harmonic minor scale can be modeled

with a single-pathway network, the melodic minor re-

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

705

quires, for the last two degrees, independent pathways in

ascent and descent. The necessary structure is suggested

in part by Figure 3c. While it is possible to represent

such a structure with alteredDegrees, a true branching

of the network is employed here.

Figure 10 demonstrates the MelodicMinorScale in

ascent and descent, and creates a melody through itera-

tive calls to the next() method, randomly moving up or

down scale steps.

cmin = scale.MelodicMinorScale('c4')

assert str(cmin.getPitches(

 direction='ascending')) == '[C4, D4, E-4,

 F4, G4, A4, B4, C5]'

assert str(cmin.getPitches('c3', 'c5',

 direction='descending')) == '[C5, B-4, A-4,

 G4, F4, E-4, D4, C4, B-3, A-3, G3, F3, E-3,

 D3, C3]'

s = stream.Stream()

p = None

for i in range(16):

 dir = random.choice([-1, 1])

 for j in range(2):

 p = cmin.next(p, dir)

 s.append(note.Note(p, type='16th'))

s.show()

Figure 10. Randomly walking the C melodic minor

scale.

Analytical applications of the melodic minor scale

are significant. Because the direction of the scale de-

fines the pitches used, non-connected (or non-

networked) scale models will not be able to properly

isolate melodic minor passages. Figure 11 finds melodic

minor scale passages of four consecutive degrees in two

keys (D and G minor) in Contrapunctus III, from J. S.

Bach’s Die Kunst der Fuge.

scDMelodicMinor = scale.MelodicMinorScale('d4')

scGMelodicMinor = scale.MelodicMinorScale('g4')

part = corpus.parseWork('bwv1080/03'

).parts[0].measures(46,51)

for sc in [scDMelodicMinor, scGMelodicMinor]:

 groups = analysis.search.

 findConsecutiveScale(part.flat, sc,

 degreesRequired=4,

 comparisonAttribute='name')

 for group in groups:

 for n in group['stream'].notes:

 n.addLyric('%s^%s' % (

 sc.getTonic().name.lower(),

 sc.getScaleDegreeFromPitch(n.pitch,

 group['direction'])))

part.show()

Figure 11. Searching and labeling consecutive direc-

tional melodic minor scale passages.

4.3. Chromatic Scales

Common symmetrical and chromatic scales, such as

the whole tone scale, octatonic scale, or Olivier Messi-

aen’s modes of limited transposition [6], are easily rep-

resented with the BoundIntervalNetwork model.

The octatonic scale provides an example. The Octa-

tonicScale class takes two initialization arguments: a

value for the tonic, and a value for the mode, where the

term mode here refers to the different rotations of the

scale. The octatonic scale has two modes: one with a

minor second as the first interval, and the other with a

major second as the first interval. These modes can be

selected with arguments given as numerical or string

representations: “m2” or 1, and “M2” or 2, respectively.

Figure 12 demonstrates returning pitches from the

two OctatonicScale formations.

sc1 = scale.OctatonicScale('e3', 'm2')

assert str(sc1.getPitches()) ==

 '[E3, F3, G3, A-3, B-3, C-4, D-4, D4, E4]'

sc2 = scale.OctatonicScale('e3', 'M2')

assert str(sc2.getPitches()) ==

 '[E3, F#3, G3, A3, B-3, C4, D-4, E-4, F-4]'

Figure 12. Employing the OctatonicScale.

4.4. Xenakis Sieves as BoundIntervalNetworks

Iannis Xenakis’s sieve (Xenakis 1990) is a compact

notation for generating complex, microtonal, and peri-

odic interval sequences and spacings. The application of

sieves to pitch scales is particularly fruitful in that oc-

tave repetition is neither required nor assumed: sieve-

based pitch scales can create infinite interval sequences

simply from repeated patterns of intervals.

A sieve can be implemented as a bi-directional

BoundIntervalNetwork, where each interval is a spacing

between active sieve points. Terminology, notation, and

implementation are taken from Ariza [1]. The Sieve-

Scale permits any sieve string representation to be used

as a creation argument. The period of the sieve is then

used to find the termini, and degree values are automati-

cally assigned within this range.

For example, a sieve in the form of the union of a

three half-step periodicity and a four half step periodic-

ity (3@0|4@0, or the union of a fully diminished sev-

enth chord and an augmented triad) has a period of 12

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

706

half steps and is octave repeating. A sieve in the form of

the union of three half-steps and seven half steps

(3@0|7@0, or the union of a fully diminished seventh

chord and a sequence of perfect fifths) has a period of

21 half steps and is not octave repeating. These scales,

and their resultant pitches, are presented in Figure 13,

along with a random permutation of pitches from a sieve

spread over four octaves.

sc1 = scale.SieveScale('c4', '3@0|4@0')
assert str(sc1.getPitches()) ==
 '[C4, E-4, F-4, G-4, A-4, A4, C5]'
sc2 = scale.SieveScale('c4', '5@0|7@0')
assert str(sc2.getPitches()) == '[C4, F4, G4,
B-4, D5, E-5, A-5, A5, C#6, E6, F#6, B6]'
s = stream.Stream()
pColection = sc2.getPitches('c3', 'c7')
random.shuffle(pColection)
for p in pColection:
 s.append(note.Note(p, type='16th'))
s.show()

Figure 13. Applications of the SieveScale.

4.5. Raga-Derived Scales

Raga, or the melodic material of Hindustani and

Carnatic musical traditions, is a complex conceptual

framework extending well-bound traditional Western

concepts of scale [11]. A comprehensive software model

of all the aspects of Raga would include seasonal and

temporal associations, emotional associations (bhava

and rasa), common melodic fragments and motives,

microtonal inflections, and numerous other attributes.

However, raga are in some cases used like scales,

though they are scales that commonly involve contour:

an ascending or descending pathway may define both

upward and downward intervals.

As a proof of modeling aptitude, raga-derived scales

can be encoded as BoundIntervalNetworks. Two scales

are presented, Asawari and Marwa. While not designed

to be authoritative, these models are evidence of the

power and flexibility of this new scale model.

Rag Asawari is unlike any previously-discussed

scale in that its ascent has five pitches while its descent

has seven. This means that some degrees are not avail-

able in the ascending form. This is modeled as a direc-

tional network similar to the model shown in Figure 3b.

Rag Marwa is unlike any previously-discussed scale

in that ascent and descent each have contour and repeat

the same pitch level twice. This means that a request for

a scale degree, given only a Pitch, produces two possi-

ble results that are resolved by weighted random selec-

tion. Depending on usage, this scale may be non-

deterministic.

Note that, as stated above, such scales cannot be

completely encoded in the widely used Scala scale for-

mat, although Scala file-format output of a realized

pathway is available. The Python example in Figure 14

illustrates applications of these two scales.

ragA = scale.RagAsawari('g3')
assert str(ragA.getPitches(
 direction='ascending')) ==
 '[G3, A3, C4, D4, E-4, G4]'
assert str(ragA.getPitches(
 direction='descending')) ==
 '[G4, F4, E-4, D4, C4, B-3, A3, G3]'
ragM = scale.RagMarwa('g3')
assert str(ragM.getPitches(
 direction='ascending')) ==
 '[G3, A-3, B3, C#4, E4, F#4, E4, G4, A-4]'
assert str(ragM.getPitches(
 direction='descending')) ==
 '[A-4, G4, A-4, F#4, E4, C#4, B3, A-3, G3]'
p1 = None
s = stream.Stream()
for dir in ([1]*10) + ([-1]*8) + ([1]*4) +
 ([-1]*3) + ([1]*4):
 p1 = ragA.next(p1, dir)
 s.append(note.Note(p1, quarterLength=.25))
s.show()

p1 = None
s = stream.Stream()
for dir in ([1]*10) + ([-1]*8) + ([1]*4) +
 ([-1]*3) + ([1]*4):
 p1 = ragM.next(p1, dir)
 s.append(note.Note(p1, quarterLength=.25))
s.show()

Figure 14. Examples of two raga-derived scale classes,

RagAsawari and RagMarwa.

4.6. Microtonal Scales from Scala Scale Files

Scala scale files encode a vast variety of microtonal

and non-standard scales, tunings, and temperaments.

The ScalaScale ConcreteScale class, given a tonic and a

Scala scale (denoted as any file name within the com-

plete Scala scale archive bundled with music21, as a

file path to a .scl file, or as a complete string representa-

tion of such a file), will create a bi-directional Bound-

IntervalNetwork representation of the desired scale,

with complete microtonal specification and the same

features as other ConcreteScale subclasses. In Figure 15,

a single octave of two different microtonal slendro

scales are created as two music21 Parts attached to a

common Score, illustrating in parallel their distinctive

microtonal tunings.

s = stream.Stream()
s.append(meter.TimeSignature('6/4'))
sc1 = scale.ScalaScale('c2', 'slendro_ang2')
sc2 = scale.ScalaScale('c2', 'slendroc5.scl')

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

707

p1 = stream.Part()

p1.append([note.Note(p, lyric=p.microtone) for

p in sc1.pitches])

p2 = stream.Part()

p2.append([note.Note(p, lyric=p.microtone) for

p in sc2.pitches])

s.insert(0, p1); s.insert(0, p2)

s.show()

Figure 15. Comparing microtonal tuning of two slen-

dro scales from the Scala scale archive.

4.7. Non-Deterministic Scales

While there are many analytical applications for de-

terministic scales, non-deterministic scales are particu-

larly well-suited for use in compositional applications.

Custom BoundIntervalNetwork objects can be designed

to describe a wide range of scale structures. An example

of such a scale is provided by the WeightedHexa-

tonicBlues class. This scale models the combination of

what are sometimes called a “minor pentatonic” scale

with a “hexatonic blues” scale. In this network design,

the raised fourth scale degree is placed on an alternative

pathway branch, similar to the model shown in Figure

4a. Thus, depending on weighted random selection, an

ascending or descending C-tonic WeightedHexatonic-

Blues pathway may move from F to G, or may alterna-

tively move from F to F-sharp to G.

The Python example in Figure 16 illustrates generat-

ing a melodic passage with this scale.

whb = scale.WeightedHexatonicBlues('c3')

p = 'c3'

s = stream.Stream()

for n in range(32):

 p = whb.next(p, random.choice([-1, 1]))

 n = note.Note(p,

quarterLength=random.choice([.5,.25,.25]))

 s.append(n)

Figure 16. An example of a generating a melody with

the non-deterministic WeightedHexatonicBlues.

5. FUTURE WORK

With these new object models, as well as support for

Scala scale files and integrated access to the Scala scale

archive, thousands of scales are already available. Our

goal is for any scale to be fully represented, all while

maintaining a powerful and uniform interface. Addi-

tional analytical and searching routines, as well as the

ability to dynamically replace scales or temperaments of

existing works, will provide even further resources for

analysis and composition.

The present implementation of the BoundInterval-

Network asserts that there is always a single high and

low terminus. This limitation may be removed with the

development of the IntervalNetwork object, a parent

class of BoundIntervalNetwork that has no restrictions

on network structure, and that could model musical

transformations (including chordal transformations)

through time.

6. ACKNOWLEDGEMENTS

Development of the BoundIntervalNetwork and the mu-

sic21 toolkit is conducted as part of a multi-year re-

search project funded by the Seaver Institute. Thanks

also to Manuel Op de Coul for permission to distribute

the Scala scale archive with music21.

7. REFERENCES

[1] Ariza, C. 2005. “The Xenakis Sieve as Object: A

New Model and a Complete Implementation.”

Computer Music Journal 29(2): pp. 40-60.

[2] Cuthbert, M. S., and C. Ariza. 2010. “music21: A

Toolkit for Computer-Aided Musicology and Sym-

bolic Music Data.” Proceedings of the International

Society on Music Information Retrieval: pp. 637–42.

[3] Johnson, J. 1997. Graph Theoretical Models of

Abstract Musical Transformation: An Introduction

and Compendium for Composers and Theorists.

Santa Barbara, California: Greenwood Press.

[4] Lewin, D. 1987. Generalized Musical Intervals and

Transformations. New Haven: Yale University

Press.

[5] Loy, G. 2007. Musimathics: The Mathematical

Foundations of Music, Volume 2. Cambridge: MIT

Press.

[6] Messiaen, O. 1944. The technique of my musical

language. Paris: Alphonse Leduc.

[7] Op de Cou, Manuel. List of musical modes.

Available online at www.huygens-

fokker.org/docs/modename.html

[8] Op de Cou, Manuel. Scala scale file format.

Available online at www.huygens-

fokker.org/scala/scl_format.html

[9] Partch, H. 1949. Genesis Of A Music: An Account

Of A Creative Work, Its Roots, And Its Fulfillment.

Madison: University of Wisconsin Press.

[10] Slonimsky, N. 1947. Thesaurus of Scales and Me-

lodic Patterns, New York: Scribners.

[11] Wade, B. C. 1994. Music in India: The Classical

Traditions. New Delhi: Manohar.

[12] Wolfram Research. 2005. “About WolframTones.”

Available online at http://tones.wolfram.com/about/.

[13] Xenakis, I. 1990. “Sieves.” Perspectives of New

Music 28(1): pp. 58-78.

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

708

