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ABSTRACT 

Like many artifacts of music notation and theory, musi-

cal scales are easy to represent in software for simple 

cases, but rapidly become very difficult for more com-

plex cases (e.g., melodic minor scale, Indian ragas, or 

microtonal scales). The BoundIntervalNetwork and 

Scale objects of the open-source music21 toolkit provide 

new and powerful tools for abstracting and manipulating 

scales as used in actual compositions. Using a novel 

application of a constrained node-and-edge graph 

model, with intervals on edges and probability weight-

ings on nodes, music21 interval networks aid analysts in 

searching and annotating otherwise difficult-to-find 

moments in musical pieces (regardless of representa-

tional encoding) and can help composers in writing new 

pieces that conform to complex, asymmetrical, non-

octave-bound, and even non-deterministic scalar mod-

els. This paper introduces the low-level BoundInterval-

Network and high-level Scale objects, and, through nu-

merous examples both in Python code and musical nota-

tion, demonstrates their usage and potential. 

1. INTRODUCTION 

Musical scales have more than theoretical or pedagogi-

cal value: they offer important resources for composers 

and tools for analysts. Even those scales that are more 

often found in theory texts than in actual pieces of music 

add to our knowledge of musical structures. Software 

tools for modeling, analyzing, and creating music need 

good representations of scales. At first, a scale might 

seem like a concept that could be modeled simply, such 

as with an ordered list of pitches. Yet, like many musi-

cal structures deployed in software for musical analysis, 

representation, and composition, the simplest concepts 

are insufficient for flexible implementations. For exam-

ple, common scale-types, such as the melodic minor, 

have different pitches when ascending versus descend-

ing; some scale-types, such as those derived from Indian 

musical traditions, may have both non-linear contours 

and repeated notes in their distinctive ascending and 

descending forms; scales that do not repeat at the octave 

pose particular difficulties in encoding their upper and 

lower boundaries. 

A list of pitches, represented symbolically or other-

wise, will thus not accommodate the true diversity of 

scale forms, but this problem has not prevented such 

encodings from being the norm. There are numerous 

examples of such shallow encodings. For example, 

WolframTones [12], a web-based music generator em-

ploying cellular automata, claims to offer “all standard 

named scales, in all major standard musical traditions.” 

Yet, these scales are explicitly specified as subsets of 

twelve semitones (pitch classes) and are encoded as 

twelve-bit binary strings. While the system offers over 

300 named scale forms, the melodic minor (the most 

common form of minor in all common-practice Western 

music) is not available; the encodings of numerous In-

dian-derived scales called raga, mela, or that, all are 

fixed within one octave and do not distinguish between 

ascending or descending forms; and, of course, microto-

nal and non-octave repeating scales are not represented. 

This binary representation is illustrative of a common 

shortcoming in describing and encoding musical scales. 

In Gareth Loys’s extensive Musimathics, for example, 

scales are defined simply as “an ordered set of pitches, 

together with a formula for specifying their frequencies” 

[5]. 

Scala, an extensive system written in Ada for explor-

ing and deploying (as tuning tables for a wide variety of 

software packages) non-equal-tempered and microtonal 

scales, tunings, and temperaments, recognizes over 

1,200 musical modes and features an archive of more 

than 3,900 scales. Modes, however, are defined as an 

ordered list of ascending scale degrees [7]. The Scala 

scale file format similarly represents scales as a single, 

fixed list of cent or ratio offsets above an implied tonic 

[8]. Such a representation does not allow for unique 

ascending or descending pathways, nor defined spelling 

of quarter-tone inflections. Though it is a broadly sup-

ported format and permits great specification of tuning, 

Scala’s representation is, in some ways, as structurally 

limited as WolframTones’s binary arrays. 

A list of pitches can, however, be generalized into a 

list of interval spacings, describing not just one pitch 

formation but all pitch formations. Interval spacings can 

then be generalized to use sophisticated interval objects, 

providing proper enharmonic spellings under transposi-

tion and microtonal spacings. Finally, a list of interval 

objects can be generalized as a directed network, where 

nodes are undefined pitch placeholders and edges are 

intervals. Such a model permits multiple pathways in 

ascent or descent, pathway branching, and weighted or 

probabilistically-selected pathways. This new model of 

the scale, based on an object called the BoundInterval-

Network, is the focus of this paper. 

With this model, a scale, either as an abstract inter-

val network (such as a melodic-minor scale) or as a con-

crete pitch collection (such as the G melodic-minor 

scale from D4 to D6), can be created and deployed. 

Pitches can be obtained from the scale by specifying a 

degree, degrees can be obtained from a pitch, and arbi-

trary pitch collections can be used to derive one or more 

new scales that fit this collection. Scales can be trans-

posed, can be walked with variable step sizes, and can 
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be used to create new concrete scales based on any scale 

degree specification. No other software system has of-

fered such a comprehensive model of scale formation. 

This powerful model and interface, implemented in 

the BoundIntervalNetwork and associated Scale objects, 

fully models diatonic scales and modes, harmonic and 

melodic minor scales, chromatic, pentatonic, octatonic, 

and whole tone scales, non-octave repeating pitch scales 

such as the sieves of Iannis Xenakis [13], microtonal 

scales such as Harry Partch’s 43-tone scale [9], and 

scales derived from Indian raga that define both contour 

and ascending and descending formations. Further, any 

scale defined in the Scala scale file format, and an scale 

within the Scala archive of over 3,900 scales, can be 

quickly deployed. 

This new model is implemented in Python as part of 

the music21 toolkit, an open-source, cross-platform 

framework written in Python for computer-aided musi-

cology [2]. (See mit.edu/music21 for downloads and 

documentation.). This paper will describe the object 

design and interface, and demonstrate applications in 

automated analysis and algorithmic composition. 

2. OBJECT HIERARCHIES AND 

COMPOSITIONS 

To inform the discussion that follows, we first pre-

sent the basic definitions of the objects, their hierar-

chies, and their compositions. The BoundIntervalNet-

work is the core object for all scale processing. A 

BoundIntervalNetwork is composed of three or more 

Node objects and two or more Edge objects. As a low-

level object, BoundIntervalNetwork objects do not need 

to be used by users who only wish to work with higher-

level scale objects. 

The Scale is a base class providing common re-

sources to both AbstractScale and ConcreteScale ob-

jects. AbstractScales are composed of one (or possibly 

more) BoundIntervalNetworks and expose the BoundIn-

tervalNetwork interface to ConcreteScales. Ab-

stractScales represent a type of scale independent of 

specific pitches, such as all major scales (as opposed to, 

say, the D-major scale); they are responsible for defin-

ing the meaning of various scale degrees, configuring 

the BoundIntervalNetwork on instantiation, and passing 

scale-type parameters to the BoundIntervalNetwork. 

ConcreteScales, on the other hand, represent a type of 

scale with a specific pitch collection; they are responsi-

ble for assigning a pitch value to a scale degree, and, by 

passing this assignment through the AbstractScale and 

BoundIntervalNetwork, providing realized scale pitches. 

Figure 1 illustrates the composition of these objects. 

Closed diamonds are object compositions and suggest 

life-time object responsibility. 

The ConcreteScale and its subclasses provide the 

main public interface for working with Scales. Each 

ConcreteScale contains one AbstractScale instance. For 

convenience, the same AbstractScale class may be used 

by multiple ConcreteScale classes (this relationship is 

not represented in Figure 1). For example, an instance of 

the AbstractDiatonicScale is used inside of MajorScale, 

MinorScale, LydianScale, and related diatonic scales. In 

some cases, a unique AbstractScale class is required for 

a single ConcreteScale, such as the AbstractMelodic-

MinorScale used in the concrete MelodicMinorScale 

class. 

 

Figure 1. Object composition of Scale-related classes. 

Figure 2 summarizes the object inheritance hierarchy 

of Scale subclasses, and provides a small sampling of 

ConcreteScale and AbstractScale subclasses. Open ar-

rows point to parent classes inherited by subclasses. 

 

 

Figure 2. Object inheritance and example subclasses of 

ConcreteScale and AbstractScale. 

3. THE BOUNDINTERVALNETWORK 

OBJECT 

The BoundIntervalNetwork is a limited or bound form 

of a directed graph. Specifically, the class models a di-

rected graph where each Edge encapsulates a music21 

Interval object (defining both the size and direction of a 

potential pitch transposition with correct enharmonic 

spelling) and is associated with a pathway direction (as-

cending, descending, or bi-directional); each Node rep-

resents an unrealized pitch, is defined with an integer 

degree value, and has a numerical weight representing 

the probability of this path being taken (as used for non-

deterministic scales). Each graph also has two nodes 

defined as termini (low and high) that function as wrap-

ping, cyclical boundaries.  

While a free-form interval network might permit any 

possible connection, the bound network requires (1) at 

least one ascending and one descending pathway con-
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necting both termini and (2) that it must be possible for 

each node to be part of a pathway that connects both 

termini. Future implementation of the IntervalNetwork 

base class may support free-form interval networks in 

pitch class space, such as those described in Johnson 

[3], alternative formulations found in Lewin [4], or pitch 

Tonnetz such as those demonstrated by Leonhard Euler 

as early as 1739. 

In this model, each Node represents a pitch but does 

not contain a specific Pitch object. When a Pitch object 

is associated with a Node, new pitches in the scale are 

realized by navigating the pathway in either ascending 

or descending directions (though not necessary ascend-

ing or descending pitch space values, as in the case of 

scales that are considered ascending, yet curve back on 

themselves along the way, such as some ragas or scales 

described in Slonimsky [10]). As each Edge defines an 

Interval, the next Node in the pathway is realized by 

transposing the source pitch. This transposition may be 

up or down in pitch space and is dependent on the sup-

plied Interval definition. When realizing an ascending 

pathway, unaltered Edge Intervals are used for transpo-

sition; when realizing a descending pathway, Edge In-

tervals are used for transposition in reverse (e.g., an 

ascending minor second in ascent, a descending minor 

second in descent). 

BoundIntervalNetworks are cyclical, though their 

realized pitch space collections may be infinite. When a 

pathway arrives at a terminus, the realized pitch is treat-

ed as a pitch in the alternate terminus, and the pathway 

continues. For example, if a pitch is realized for the high 

terminus, the next edge is found by treating the just-

realized pitch as a pitch for the low terminus. In this 

way the termini nodes are essentially the same, 

wrapping around in the graph. The realized pitch se-

quence, however, need not wrap, and often forms an 

infinite sequence of pitch space values. While a theo-

retical graph might easily represent the two termini as 

one node, this musically-informed design uses two dis-

tinct nodes to better represent conventional models of 

scales. 

The most relevant functionality of BoundInterval-

Networks is exposed in the interface of the ConcreteS-

cale, which will be discussed later. Understanding a few 

attributes and methods of the BoundIntervalNetwork, 

however, will clarify the design. Each BoundInterval-

Network has two stored Boolean values that declare its 

basic structural characteristics: the deterministic at-

tribute declares whether every ascending and descend-

ing pathway for a given Pitch-Node assignment will 

always be the same; the octaveRepeating attribute de-

clares whether all realized pitches repeat for each oc-

tave. The realize() method, given a single Pitch, a 

Node to which that Pitch is assigned to, a pathway di-

rection, and a Pitch range, navigates a pathway through 

the network and returns the resultant Pitches, paired 

with references to the specific Nodes used in realization. 

For deterministic BoundIntervalNetworks, pitch seg-

ments obtained from realize() are cached and reused 

when possible. 

While interval spacings drive the formation of 

scales, it is useful to apply interval transformations to 

resultant Pitch Nodes after Edge-derived transpositions. 

An alteredDegrees dictionary accommodates this 

functionality. It is a data structure, stored in Ab-

stractScales, that is passed to BoundIntervalNetworks 

whenever pitches need to be realized. This approach 

permits two-levels of design: (1) the BoundIntervalNet-

work structure, based on pathways of intervals, and (2) 

the AbstractScale alteredDegrees dictionary, based on 

transforming realized Nodes. A complex AbstractScale 

might, for example, adjust the alteredDegrees diction-

ary for stochastic variation or contextual pitch adjust-

ments. An application of the alteredDegrees diction-

ary is demonstrated below as the HarmonicMinorScale. 

The following figures illustrate reduced, hypotheti-

cal BoundIntervalNetwork graph structures, and de-

scribe archetypical formations. In all cases, Nodes la-

beled a and b represent the low and high termini respec-

tively. Nodes at parallel vertical positions share the 

same degree value. In all cases, the number of nodes and 

edges can be increased to accommodate more intervals. 

While graph structures define scales as conjunct move-

ments, any skip or disjunct motion is possible. 

Figure 3 illustrates the most common types of de-

terministic IntervalNetworks. These structures may or 

may not be octave repeating. Figure 3a is a simple bi-

directional structure, the type of scale most software  

models. Any number of Nodes may intervene between 

the termini. For any defined degree, there is only one 

Node available. Figure 3b has independent ascending 

and descending pathways. Between the termini there are 

two nodes for each degree. Requests for a pitch based 

on a degree are resolved depending on a provided path-

way direction. Figure 3b could represent scale degrees 

five to eight of the melodic minor scale. Figure 3c has a 

bidirectional segment and an independent pathway seg-

ment. An expanded structure, similar to this one, is used 

to represent the entire melodic minor scale as presented 

below. Figures 3b and 3c represent scale archetypes not 

available in existing software implementations. 

Not all scales and scale-like objects produce the 

same Pitch sequence with each realization. Figure 4 

illustrates some possibilities for these non-deterministic 

BoundIntervalNetworks. Figure 4a, for example, has all 

bi-directional Edges, but branches in both ascent and 

descent for Node y. The determination of which Node is 

realized is determined by weighted random selection of 

the possible destination Nodes. Depending on the 

weights, for instance, the Pitch in Node x might ascend 

to Node y 40% of the time, and directly to Node z 60% 

of the time. Figure 4b defines a structure with two as-

cending and two descending pathways. Again, the 

choice of Node, when more than one is available for a 

given pathway direction, is based on weighted random 

selection. When requesting a pitch from a degree that is 

associated with more than one Node, weighted random 

selection is again used. For example, if Nodes q, r, and s 

are all associated with degree 2, and a user requests an 

ascending pitch at this degree, one of Node q or r (the 
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only nodes on an ascending pathway) will be selected 

according to their respective weights. The modeling and 

deployment of such scale formations is unique to the 

Scale model presented in this paper. 

As stated previously, the BoundIntervalNetwork is a 

directed graph with some restrictions. Example 5 shows 

these restrictions through three examples of networks 

that, while potentially modeling interesting pitch collec-

tions, are illegal. Figure 5a has no complete pathway 

between the lowest and highest termini. Figure 5b has 

an ascending pathway between the termini, but no com-

plete descending pathway; further, Node x is not part of 

a complete pathway. Though Figure 5c has both a com-

plete ascending and descending pathway, its Node y is 

not part of a complete pathway. 

4. ABSTRACTSCALES, CONCRETE–

SCALES, AND THEIR SUBCLASSES 

Music21 possesses two mail types of scale classes: (1) 

AbstractScales expose interval networks independent of 

specific pitch positions, while (2) ConcreteScales local-

ize a scale with specific pitches for each node or scale 

degree. While the main role of an AbstractScale is to 

configure and expose the interface of the BoundInter-

valNetwork, AbstractScales also provide the additional 

functionality of a tonicDegree attribute, which defines 

the tonic position as being some numerical degree. The 

term tonic here is used loosely, and may refer to a tonic 

on scale degree 1 in the tonal sense, or may refer to a 

finalis, such as scale degree 4 in chant’s plagal Dorian 

mode. AbstractScales can also export any scale in the 

Scala file format with the write('scala') or 

show('scala') methods and arguments. 

The main public interface for working with scales 

are the ConcreteScale and its subclasses. A ConcreteS-

cale, on instantiation, is given a music21 Pitch object as 

a tonic. Additionally, some ConcreteScale subclasses 

may take other parameters to specialize their mode or 

formation. To localize the pitch collection, the tonic-

Degree attribute in the AbstractScale is combined with a 

stored tonic Pitch in the ConcreteScale. The ConcreteS-

cale provides a wide range of functionality: access to the 

stored AbstractScale via the abstract property, a 

transpose() method, a method to get a list of Pitches 

for any specified pitch range (getPitches()) or as a 

Chord (getChord()), methods for obtaining one or more 

Pitches from one or more degree values (pitchFrom-

Degree(), pitchesFromScaleDegrees()), a method to 

get a degree from a pitch (getScaleDegreeFrom-

Pitch()), a method to get the next pitch in the scale 

given another Pitch and a pathway direction (next()), 

various methods for comparing this realized scale to 

other scales (match(), findMissing()), and methods to 

create a new ConcreteScale of this class based on arbi-

trary pitch collections or a pitch assigned to new scale 

degree (derive(), deriveByDegree()). Examples of 

these methods are given below. 

4.1. Modeling all Diatonic Scales and Modes 

All diatonic scales and modes (e.g., major, natural mi-

nor, and historical and theoretical diatonic modes) are 

made available through pairing of an AbstractDiatonic-

Scale instance and a ConcreteScale subclass. In addition 

to the tonicDegree attribute, the AbstractDiatonicScale 

class defines a dominantDegree attribute. The sugges-

tion of a dominant is again used loosely, and may refer 

to something more like a modal reciting tone. Concrete 

diatonic scales are given additional features by inherit-

ing a common ConcreteScale subclass: DiatonicScale. 

This class provides methods for all modes such as 

getLeadingTone(), getParallelMinor(), get-

ParallelMajor(), getRelativeMinor(), and getRela-

tiveMajor(). 

The Python example in Figure 6 demonstrates basic 

functionality of the MajorScale. The same functionality 

is available with all DiatonicScale subclasses. 

 
# providing a tonic 

gScale = scale.MajorScale('g4') 

esScale = scale.MajorScale('e-3') # E-flat 

# comparing Concrete and Abstract Scales 

assert (gScale == esScale) == False 

assert (gScale.abstract == esScale.abstract) == 

True 

# getPitches() with and without arguments  

 
 

 

Figure 3. Deterministic BoundIn-

tervalNetwork structures. 

 

Figure 4. Non-deterministic 

BoundIntervalNetwork structures. 

 

Figure 5. Directed graphs that can-

not be modeled as BoundInterval-

Networks. 
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assert str(gScale.getPitches()) ==  

       '[G4, A4, B4, C5, D5, E5, F#5, G5]' 

assert str(esScale.getPitches('c2', 'd3')) ==  

   '[C2, D2, E-2, F2, G2, A-2, B-2, C3, D3]' 

# additional functionality as a Chord 

assert gScale.getChord().forteClass == '7-35' 

# given a degree, get a pitch, and vice versa 

assert str(gScale.pitchFromDegree(5)) == 'D5' 

assert str(esScale.pitchesFromScaleDegrees( 

[7,2], 'e-6', 'e-9')) == '[F6, D7, F7, D8, F8, 

D9]' 

assert esScale.getScaleDegreeFromPitch('d') == 

7 

# get the next pitch given step directions 

match = [pitch.Pitch('g2')] 

for dir in [1, 1, 1, -2, 4, -1, 1, 1, 1]: 

    # get next pitch based on the last 

    match.append(gScale.next(match[-1], dir)) 

assert str(match), '[G2, A2, B2, C3, A2, E3, 

D3, E3, F#3, G3]' 

# derive new scales based on pitches or degree 

print gScale.derive(['c4', 'g4', 'b8', 'f2']) 

<music21.scale.MajorScale C major> 

print gScale.deriveByDegree(7, 'C#')  

<music21.scale.MajorScale D major> 

Figure 6. Creating, using, and deriving MajorScale in-

stances. 

Modal scale definitions permit access to both relative 

major and minor scales, as well as access to appropriate 

finalis and reciting-tone values. These attributes are 

demonstrated in Figure 7. 

 
ph = scale.PhrygianScale('g4') 

assert str(ph.getPitches('F2', 'G3')) ==  

   '[F2, G2, A-2, B-2, C3, D3, E-3, F3, G3]' 

assert str(ph.getRelativeMajor()) == 

'<music21.scale.MajorScale E- major>' 

assert str(ph.getTonic()),  

    str(ph.getDominant()) == ('G4', 'D5') 

hd = scale.HypodorianScale('a6') 

assert str(hd.getDominant()) == 'C7' 

Figure 7. Useful methods of the PhrygianScale and 

Hypodorian modal scales. 

The diatonic scales offer numerous resources for analyz-

ing melodic material found in common-practice func-

tional harmony. Applications include labeling pitch col-

lections by scale degrees and illustrating parallel and 

simultaneous key interpretations based on scale seg-

ments. The following example, Figure 8, employs the 
music21 analysis.search.findConsecutiveScale() 

routine to find and label consecutive, mono-directional 

scale segments, consisting of at least five degrees, for 

two major scales (G, D), in an excerpt from the first 

violin of W. A. Mozart’s String Quartet No. 1. This il-

lustrates extended linear scalar passages and multiple 

key interpretations. Such a routine could easily be ex-

tended to systematically find all such passages in an 

entire work or corpus, permitting generalizations about 

melodic writing and key usage by part, work, period, or 

composer. 

 
scGMajor = scale.MajorScale('g4') 

scDMajor = scale.MajorScale('d4') 

s = corpus.parseWork( 

    'mozart/k80/movement1').measures(21,25) 

for part in s.parts:  

  for sc in [scGMajor, scDMajor]: 

    groups = analysis.search. 

    findConsecutiveScale(part.flat, sc,       

    degreesRequired=5,  

    comparisonAttribute='name') 

    for group in groups: 

      for n in group['stream'].notes: 

        n.addLyric('%s^%s' %  

        (sc.getTonic().name,  

        sc.getScaleDegreeFromPitch( 

        n.pitch))) 

s['violin i'].show('musicxml') 

 

Figure 8. Searching and labeling consecutive direc-

tional major scale passages. 

4.2. Altered Minor Scales 

As already suggested, the harmonic and melodic mi-

nor scales pose a challenge to software modeling. As 

implemented here, both have concrete subclasses that 

are derived from DiatonicScale; each, however, has a 

custom AbstractScale subclass. 

The harmonic minor scale is best modeled as a natu-

ral minor scale with an altered (raised) seventh degree. 

This approach permits shifting a Node rather than alter-

ing the spacing of two Edges, and provides proper en-

harmonic spelling. The AbstractHarmonicMinorScale 

class defines a private alteredDegrees dictionary. This 

dictionary defines an augmented unison transposition 

for scale degree seven. For each call on BoundInterval-

Network’s realize() method, the AbstractHarmonic-

MinorScale passes a reference to this dictionary and, 

when necessary, raises the seventh scale degree. 

Figure 9 demonstrates basic functionality of the 

HarmonicMinorScale, as well notation of a simple me-

lodic line with disjunct melodic motion based on a nu-

merical scale degree specification. 

 
sc1 = scale.HarmonicMinorScale('a3') 

assert str(sc1.getPitches()) ==  

       '[A3, B3, C4, D4, E4, F4, G#4, A4]' 

assert str(sc1.getTonic()), 

str(sc1.getDominant()) == ('A3', 'E4') 

s = stream.Stream()     

for d in [1, 3, 2, 1, 6, 5, 8, 7, 8]: 

    s.append(note.Note(sc1.pitchFromDegree( 

    d, equateTermini=False), type='eighth')) 

s.show() 

 

Figure 9. Employing the HarmonicMinorScale. 

While the harmonic minor scale can be modeled 

with a single-pathway network, the melodic minor re-
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quires, for the last two degrees, independent pathways in 

ascent and descent. The necessary structure is suggested 

in part by Figure 3c. While it is possible to represent 

such a structure with alteredDegrees, a true branching 

of the network is employed here. 

Figure 10 demonstrates the MelodicMinorScale in 

ascent and descent, and creates a melody through itera-

tive calls to the next() method, randomly moving up or 

down scale steps. 

 
cmin = scale.MelodicMinorScale('c4') 

assert str(cmin.getPitches( 

    direction='ascending')) == '[C4, D4, E-4,  

    F4, G4, A4, B4, C5]' 

assert str(cmin.getPitches('c3', 'c5',  

    direction='descending')) == '[C5, B-4, A-4, 

    G4, F4, E-4, D4, C4, B-3, A-3, G3, F3, E-3,  

    D3, C3]' 

s = stream.Stream() 

p = None 

for i in range(16): 

    dir = random.choice([-1, 1]) 

    for j in range(2): 

        p = cmin.next(p, dir) 

        s.append(note.Note(p, type='16th')) 

s.show() 

 

Figure 10. Randomly walking the C melodic minor 

scale. 

Analytical applications of the melodic minor scale 

are significant. Because the direction of the scale de-

fines the pitches used, non-connected (or non-

networked) scale models will not be able to properly 

isolate melodic minor passages. Figure 11 finds melodic 

minor scale passages of four consecutive degrees in two 

keys (D and G minor) in Contrapunctus III, from J. S. 

Bach’s Die Kunst der Fuge. 

 
scDMelodicMinor = scale.MelodicMinorScale('d4') 

scGMelodicMinor = scale.MelodicMinorScale('g4') 

part = corpus.parseWork('bwv1080/03' 

    ).parts[0].measures(46,51) 

for sc in [scDMelodicMinor, scGMelodicMinor]: 

    groups = analysis.search. 

    findConsecutiveScale(part.flat, sc,  

    degreesRequired=4,  

    comparisonAttribute='name') 

    for group in groups: 

        for n in group['stream'].notes: 

            n.addLyric('%s^%s' % ( 

            sc.getTonic().name.lower(),  

            sc.getScaleDegreeFromPitch(n.pitch,   

            group['direction']))) 

part.show() 

 

Figure 11. Searching and labeling consecutive direc-

tional melodic minor scale passages. 

4.3. Chromatic Scales 

Common symmetrical and chromatic scales, such as 

the whole tone scale, octatonic scale, or Olivier Messi-

aen’s modes of limited transposition [6], are easily rep-

resented with the BoundIntervalNetwork model. 

The octatonic scale provides an example. The Octa-

tonicScale class takes two initialization arguments: a 

value for the tonic, and a value for the mode, where the 

term mode here refers to the different rotations of the 

scale. The octatonic scale has two modes: one with a 

minor second as the first interval, and the other with a 

major second as the first interval. These modes can be 

selected with arguments given as numerical or string 

representations: “m2” or 1, and “M2” or 2, respectively. 

Figure 12 demonstrates returning pitches from the 

two OctatonicScale formations. 

 
sc1 = scale.OctatonicScale('e3', 'm2') 

assert str(sc1.getPitches()) ==  

   '[E3, F3, G3, A-3, B-3, C-4, D-4, D4, E4]' 

sc2 = scale.OctatonicScale('e3', 'M2') 

assert str(sc2.getPitches()) ==  

   '[E3, F#3, G3, A3, B-3, C4, D-4, E-4, F-4]' 

Figure 12. Employing the OctatonicScale. 

4.4. Xenakis Sieves as BoundIntervalNetworks 

Iannis Xenakis’s sieve (Xenakis 1990) is a compact 

notation for generating complex, microtonal, and peri-

odic interval sequences and spacings. The application of 

sieves to pitch scales is particularly fruitful in that oc-

tave repetition is neither required nor assumed: sieve-

based pitch scales can create infinite interval sequences 

simply from repeated patterns of intervals. 

A sieve can be implemented as a bi-directional 

BoundIntervalNetwork, where each interval is a spacing 

between active sieve points. Terminology, notation, and 

implementation are taken from Ariza [1]. The Sieve-

Scale permits any sieve string representation to be used 

as a creation argument. The period of the sieve is then 

used to find the termini, and degree values are automati-

cally assigned within this range. 

For example, a sieve in the form of the union of a 

three half-step periodicity and a four half step periodic-

ity (3@0|4@0, or the union of a fully diminished sev-

enth chord and an augmented triad) has a period of 12 
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half steps and is octave repeating. A sieve in the form of 

the union of three half-steps and seven half steps 

(3@0|7@0, or the union of a fully diminished seventh 

chord and a sequence of perfect fifths) has a period of 

21 half steps and is not octave repeating. These scales, 

and their resultant pitches, are presented in Figure 13, 

along with a random permutation of pitches from a sieve 

spread over four octaves. 

 
sc1 = scale.SieveScale('c4', '3@0|4@0') 
assert str(sc1.getPitches()) ==  
   '[C4, E-4, F-4, G-4, A-4, A4, C5]' 
sc2 = scale.SieveScale('c4', '5@0|7@0') 
assert str(sc2.getPitches()) == '[C4, F4, G4, 
B-4, D5, E-5, A-5, A5, C#6, E6, F#6, B6]' 
s = stream.Stream() 
pColection = sc2.getPitches('c3', 'c7') 
random.shuffle(pColection) 
for p in pColection: 
    s.append(note.Note(p, type='16th')) 
s.show() 

 

Figure 13. Applications of the SieveScale. 

4.5. Raga-Derived Scales 

Raga, or the melodic material of Hindustani and 

Carnatic musical traditions, is a complex conceptual 

framework extending well-bound traditional Western 

concepts of scale [11]. A comprehensive software model 

of all the aspects of Raga would include seasonal and 

temporal associations, emotional associations (bhava 

and rasa), common melodic fragments and motives, 

microtonal inflections, and numerous other attributes. 

However, raga are in some cases used like scales, 

though they are scales that commonly involve contour: 

an ascending or descending pathway may define both 

upward and downward intervals. 

As a proof of modeling aptitude, raga-derived scales 

can be encoded as BoundIntervalNetworks. Two scales 

are presented, Asawari and Marwa. While not designed 

to be authoritative, these models are evidence of the 

power and flexibility of this new scale model. 

Rag Asawari is unlike any previously-discussed 

scale in that its ascent has five pitches while its descent 

has seven. This means that some degrees are not avail-

able in the ascending form. This is modeled as a direc-

tional network similar to the model shown in Figure 3b. 

Rag Marwa is unlike any previously-discussed scale 

in that ascent and descent each have contour and repeat 

the same pitch level twice. This means that a request for 

a scale degree, given only a Pitch, produces two possi-

ble results that are resolved by weighted random selec-

tion. Depending on usage, this scale may be non-

deterministic. 

Note that, as stated above, such scales cannot be 

completely encoded in the widely used Scala scale for-

mat, although Scala file-format output of a realized 

pathway is available. The Python example in Figure 14 

illustrates applications of these two scales. 

 
ragA = scale.RagAsawari('g3') 
assert str(ragA.getPitches( 
    direction='ascending')) ==  
     '[G3, A3, C4, D4, E-4, G4]' 
assert str(ragA.getPitches( 
    direction='descending')) ==  
     '[G4, F4, E-4, D4, C4, B-3, A3, G3]' 
ragM = scale.RagMarwa('g3') 
assert str(ragM.getPitches( 
    direction='ascending')) ==  
    '[G3, A-3, B3, C#4, E4, F#4, E4, G4, A-4]' 
assert str(ragM.getPitches( 
    direction='descending')) ==  
    '[A-4, G4, A-4, F#4, E4, C#4, B3, A-3, G3]' 
p1 = None 
s = stream.Stream() 
for dir in ([1]*10) + ([-1]*8) + ([1]*4) +  
    ([-1]*3) + ([1]*4): 
    p1 = ragA.next(p1, dir) 
    s.append(note.Note(p1, quarterLength=.25)) 
s.show() 

 
p1 = None 
s = stream.Stream() 
for dir in ([1]*10) + ([-1]*8) + ([1]*4) +  
    ([-1]*3) + ([1]*4): 
    p1 = ragM.next(p1, dir) 
    s.append(note.Note(p1, quarterLength=.25)) 
s.show() 

 

Figure 14. Examples of two raga-derived scale classes, 

RagAsawari and RagMarwa. 

4.6. Microtonal Scales from Scala Scale Files 

Scala scale files encode a vast variety of microtonal 

and non-standard scales, tunings, and temperaments. 

The ScalaScale ConcreteScale class, given a tonic and a 

Scala scale (denoted as any file name within the com-

plete Scala scale archive bundled with music21, as a 

file path to a .scl file, or as a complete string representa-

tion of such a file), will create a bi-directional Bound-

IntervalNetwork representation of the desired scale, 

with complete microtonal specification and the same 

features as other ConcreteScale subclasses. In Figure 15, 

a single octave of two different microtonal slendro 

scales are created as two music21 Parts attached to a 

common Score, illustrating in parallel their distinctive 

microtonal tunings. 

 
s = stream.Stream() 
s.append(meter.TimeSignature('6/4')) 
sc1 = scale.ScalaScale('c2', 'slendro_ang2') 
sc2 = scale.ScalaScale('c2', 'slendroc5.scl') 
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p1 = stream.Part() 

p1.append([note.Note(p, lyric=p.microtone) for 

p in sc1.pitches]) 

p2 = stream.Part() 

p2.append([note.Note(p, lyric=p.microtone) for 

p in sc2.pitches]) 

s.insert(0, p1); s.insert(0, p2) 

s.show() 

 

Figure 15. Comparing microtonal tuning of two slen-

dro scales from the Scala scale archive. 

4.7. Non-Deterministic Scales 

While there are many analytical applications for de-

terministic scales, non-deterministic scales are particu-

larly well-suited for use in compositional applications. 

Custom BoundIntervalNetwork objects can be designed 

to describe a wide range of scale structures. An example 

of such a scale is provided by the WeightedHexa-

tonicBlues class. This scale models the combination of 

what are sometimes called a “minor pentatonic” scale 

with a “hexatonic blues” scale. In this network design, 

the raised fourth scale degree is placed on an alternative 

pathway branch, similar to the model shown in Figure 

4a. Thus, depending on weighted random selection, an 

ascending or descending C-tonic WeightedHexatonic-

Blues pathway may move from F to G, or may alterna-

tively move from F to F-sharp to G. 

The Python example in Figure 16 illustrates generat-

ing a melodic passage with this scale. 
 

whb = scale.WeightedHexatonicBlues('c3') 

p = 'c3' 

s = stream.Stream() 

for n in range(32): 

    p = whb.next(p, random.choice([-1, 1])) 

    n = note.Note(p,  

quarterLength=random.choice([.5,.25,.25])) 

    s.append(n) 

 

Figure 16. An example of a generating a melody with 

the non-deterministic WeightedHexatonicBlues. 

5. FUTURE WORK 

With these new object models, as well as support for 

Scala scale files and integrated access to the Scala scale 

archive, thousands of scales are already available. Our 

goal is for any scale to be fully represented, all while 

maintaining a powerful and uniform interface. Addi-

tional analytical and searching routines, as well as the 

ability to dynamically replace scales or temperaments of 

existing works, will provide even further resources for 

analysis and composition. 

The present implementation of the BoundInterval-

Network asserts that there is always a single high and 

low terminus. This limitation may be removed with the 

development of the IntervalNetwork object, a parent 

class of BoundIntervalNetwork that has no restrictions 

on network structure, and that could model musical 

transformations (including chordal transformations) 

through time. 
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