
A TIMBRE ANALYSIS AND CLASSIFICATION TOOLKIT FOR PURE DATA

William Brent

University of California, San Diego
Center for Research in Computing and the Arts

ABSTRACT

This paper describes example applications of a timbre anal-
ysis and classification toolkit for pure data (Pd). The tim-
breID collection of Pd externals enable both systematic and
casual exploration of sound characteristics via objects that
are streamlined and easy to use. Details surrounding signal
buffering, blocking, and windowing are performed indepen-
dently by the objects, so that analyses can be obtained with
very little patching. A modular design allows for adaptable
configurations and many possible creative ends. The appli-
cations described here include vowel classification, target-
driven concatenative synthesis, ordering sounds by timbre,
and mapping of a sound set in timbre space.

1. INTRODUCTION

Several projects have been developed for the purpose of or-
ganizing sounds and/or querying an audio corpus based on
timbral similarity. CataRT and Soundspotter are among the
most widely recognized open source options [7][3]. The
former is available as a Max/MSP implementation, while
the latter is intended for multiple platforms—including Pd.
Soundspotter’s Pd realization is primarily designed for real
time target-driven concatenative synthesis. More general
tools for creative work centered on timbre similarity are lim-
ited in Pd.

timbreID is a Pd external collection developed by the
author. It is composed of a group of objects for extract-
ing timbral features, and a classification object that man-
ages the resulting database of information. The objects are
designed to be easy to use and adaptable for a number of
purposes, including real-time timbre identification, ordering
of sounds by timbre, target-driven concatenative synthesis,
and plotting of sounds in a user-defined timbre space that
can be auditioned interactively. This paper will summarize
the most relevant features of the toolkit and describe its use
in the four applications listed above.

2. FEATURE EXTRACTION OBJECTS

In general, timbreID’s feature extraction objects have four
important qualities. First, each object maintains its own
signal buffer based on a user-specified window size. This

eliminates the need for sub-patches in Pd to set window size
using the block∼ object. Second, Hann windowing is au-
tomatically applied within each object so that input signals
do not need to be multiplied against a window table using
the tabreceive∼ object. Third, analysis timing is sample-
accurate. Each object outputs analysis results upon receiv-
ing a bang, capturing the desired slice of audio regardless
of Pd’s default 64-sample block boundaries. Thus, there is
no need to set overlap values with block∼ in order to de-
fine a particular time resolution. Fourth, because the objects
perform analysis on a per-request basis, the only computa-
tional overhead incurred during periods of analysis inactiv-
ity is that of buffering. Combined, these four qualities make
signal analysis in Pd straightforward and accessible.

2.1. Available Features

The following external objects for measuring basic features
are provided with timbreID: magSpec∼, specBrightness∼,
specCentroid∼, specFlatness∼, specFlux∼, specIrregularity∼,
specKurtosis∼, specRolloff∼, specSkewness∼, specSpread∼,
and zeroCrossing∼. The more processed features in the set
(generated by barkSpec∼, cepstrum∼, mfcc∼, and bfcc∼)
are generally the most powerful for classification. Math-
ematical definitions for many of these measurements are
given in a previous paper, along with an evaluation of their
effectiveness [1]. Detailed information on sound descrip-
tors in general is available elsewhere [8][9]. Although an
understanding of the various analysis techniques is not re-
quired for use, a general idea of what to expect can be very
helpful. To that effect, a simple demonstration and straight-
forward explanation of each feature is given in its accompa-
nying help file.

In order to facilitate as many types of usage as possible,
non real-time versions of all feature externals are provided
for analyzing samples directly from graphical arrays in Pd.

2.2. Open-ended analysis strategies

Independent, modular analysis objects allow for flexible anal-
ysis strategies. Each of the objects reports its results as ei-
ther a single number or a list that can be further manipulated
in Pd. Feature lists of any size can be packed together so
that users can design a custom approach that best suits their

224



particular sound set. Figure 1 demonstrates how to gener-
ate a feature list composed of MFCCs, spectral centroid,
and spectral brightness. Subsets of mel-frequency cepstral
coefficients (MFCCs) are frequently used for economically
representing spectral envelope, while spectral centroid and
brightness provide information about the distribution of spec-
tral energy in a signal. Each time the button in the upper
right region of the patch is clicked, a multi-feature analysis
snapshot composed of these features will be produced.

Figure 1. Generating a mixed feature list.

Capturing the temporal evolution of audio features re-
quires some additional logic. In Figure 2, a single feature list
is generated based on 5 successive analysis frames, spaced
50 milliseconds apart. The attack of a sound is reported
by bonk∼ [6], turning on a metro that fires once every 50
ms before turning off after almost a quarter second. Via
list prepend, the initial moments of the sound’s temporally-
evolving MFCCs are accumulated to form a single list. By
the time the fifth mel-frequency cepstrum measurement is
added, the complete feature list is allowed to pass through a
spigot for routing to timbreID, the classification object de-
scribed below in section 3. Recording changes in MFCCs
(or any combination of features) over time provides detailed
information for the comparison of complex sounds.

These patches illustrate some key differences from the
Pd implementation of libXtract, a well developed multi-platf-
orm feature extraction library described in [2]. Extracting
features in Pd using the libXtract∼ wrapper requires sub-
patch blocking, Hann windowing, and an understanding of
libXtract’s order of operations. For instance, to generate
MFCCs, it is necessary to generate magnitude spectrum with
a separate object, then chain its output to a separate MFCC
object. The advantage of libXtract’s cascading architecture
is that the spectrum calculation occurs only once, yet two or
more features can be generated from the results.

While timbreID objects are wasteful in this sense (each
object redundantly calculates its own spectrum), they are
more efficient with respect to downtime. As mentioned above,
features are not generated constantly, only when needed.
Further, from a user’s perspective, timbreID objects require

Figure 2. Generating a time-evolving feature list.

less knowledge about analysis techniques, and strip away
layers of patching associated with blocking and windowing.

In order to have maximum control over algorithm de-
tails, all feature extraction and classification functions were
written by the author, and timbreID has no non-standard li-
brary dependencies.

3. THE CLASSIFICATION OBJECT

Features generated with the objects described in section 2
can be used directly as control information in real-time per-
formance. In order to extend functionality, however, a multi-
purpose classification external is provided as well. This ob-
ject, timbreID, functions as a storage and routing mecha-
nism that can cluster and order the features it stores in mem-
ory, and classify new features relative to its database. Apart
from the examples package described in the following sec-
tion, an in-depth help patch accompanies timbreID, demon-
strating how to provide it with training features and classify
new sounds based on training. Figure 3 depicts the most
basic network required for this task.

Training features go to the first inlet, and features in-
tended for classification go to the second inlet. Suppose the
patch in Figure 3 is to be used for percussive instrument
classification. In order to train the system, each instrument

225



Figure 3. timbreID in a training configuration.

should be struck a few times at different dynamic levels.
For each strike, an onset detector like bonk∼ will send a
bang message to bfcc∼—the Bark-frequency cepstral anal-
ysis object. Once a training database has been accumlated
in this manner, bfcc∼’s output can be routed to timbreID’s
second inlet, so that any new instrument onsets will generate
a nearest match report from the first outlet. A match result
is given as the index of the nearest matching instance as as-
signed during training. For each match, the second outlet
reports the distance between the input feature and its near-
est match, and the third outlet produces a confidence mea-
sure based on the ratio of the first and second best match
distances.

For many sound sets, timbreID’s clustering function will
automatically group features by instrument. A desired num-
ber of clusters corresponding to the number of instruments
must be given with the “cluster” message, and an agglomer-
ative hierarchical clustering algorithm will group instances
according to current similarity metric settings. Afterward,
timbreID will report the associated cluster index of the near-
est match in response to classification requests.

Once training is complete, the resulting feature database
can be saved to a file for future use. There are four file
formats available: timbreID’s binary .timid format, a text
format for users who wish to inspect the database, ARFF
format for use in WEKA1, and .mat format for use in either
MATLAB or GNU octave.

3.1. timbreID settings

Nearest match searches are performed with a k-nearest neigh-
bor strategy, where K can be chosen by the user. Several

1WEKA is a popular open source machine learning package described
in [4]

other settings related to the matching process can also be
specified. Four different similarity metrics are available:
Euclidean, Manhattan (taxicab), Correlation, and Cosine Sim-
ilarity. For feature databases composed of mixed features,
feature attribute normalization can be activated so that fea-
tures with large ranges do not inappropriately weight the
distance calculation. Specific weights can be dynamically
assigned to any attribute in the feature list in order to ex-
plore the effects of specific proportions of features during
timbre classification or sound set ordering. Alternatively,
the feature attributes used in nearest match calculations can
be restricted to a specific range or subset. Or, the attribute
columns of the feature database can be ordered by variance,
so that match calculations will be based on the attributes
with the highest variance.

Further aspects of timbreID’s functionality are best il-
lustrated in context. The following section describes four of
the example patches that accompany the timbreID package.

4. APPLICATIONS

4.1. Vowel recognition

Identification of vowels articulated by a vocalist is a task
best accomplished using the cepstrum∼ object. Under the
right circumstances, cepstral analysis can achieve a rough
deconvolution of two convolved signals. In the case of a
sung voiced vowel, glottal impulses at a certain frequency
are convolved with a filter corresponding to the shape of the
vocalist’s oral cavity. Depending on fundamental frequency,
the cepstrum of such a signal will produce two distinctly
identifiable regions: a compact representation of the filter
component at the low end, and higher up, a peak associated
with the pitch of the note being sung. The filter region of the
cepstrum should hold its shape reasonably steady in spite
of pitch changes, making it possible to identify vowels no
matter which pitch the vocalist happens to be singing. As
pitch moves higher, the cepstral peak actually moves lower,
as the so-called “quefrency” axis corresponds to period—
the inverse of frequency. If the pitch is very high, it will
overlap with the region representing the filter component,
and destroy the potential for recognizing vowels regardless
of pitch2.

Having acknowledged these limitations, a useful pitch-
independent vowel recognition system can nevertheless be
arranged using timbreID objects very easily. Figure 4 shows
a simplified excerpt of an example patch where cepstral co-
efficients 2 through 40 are sent to timbreID’s training in-
let every time the red snapshot button is clicked. Although
identical results could be achieved without splitting off a
specific portion of the cepstrum3, pre-processing the feature

2These qualities of cepstral analysis can be observed by sending
cepstrum∼’s output list to an array and graphing the analysis continuously
in real-time.

3The alternative would be to pass the entire cepstrum, but set timbreID’s

226



Figure 4. Sending training snapshots and continuous over-
lapping cepstral analyses to timbreID.

with two instances of Pd’s list splitting object keeps tim-
breID’s feature database more compact. The choice of cep-
stral coefficient range 2 through 40 is somewhat arbitrary,
but it is very easy to experiment with different ranges by
changing the arguments of the two list split objects.

In order to train the system on 3 vowels, about 5 snap-
shots must be captured during training examples of each
sung vowel. In order to distinguish background noise, 5
additional snapshots should be taken while the vocalist is
silent. Next, the “cluster” message is sent with an argument
of 4, which automatically groups similar analyses so that the
first vowel is represented by cluster 0, the second vowel by
cluster 1, and so on. The cluster associated with background
noise will end up as cluster 3. It is not necessary to ensure
that each vowel receives the same number of analyses. If
there were 7 training examples for the first vowel and only
5 for the others, the clustering algorithm should still group
the analyses correctly. Clustering results can be verified by
sending the “cluster list” message, which sends a list of any
particular cluster’s members out of timbreID’s fourth outlet.

To switch from training to classification, cepstrum∼’s
pre-processed output must be connected to timbreID’s sec-
ond inlet. The actual example patch contains a few routing
objects to avoid manual re-patching, but they are omitted
here for clarity. Activating the metro in Figure 4 enables
continuous overlapping analysis. If finer time resolution is
desired for even faster response, the metro’s rate can be set
to a shorter duration. Here, the rate is set to half the du-
ration of the analysis window size in milliseconds, which

active attribute range to use only the 2nd through 40th coefficients in simi-
larity calculations.

corresponds to an overlap of 2. As each analysis is passed
from cepstrum∼ to timbreID, a nearest match is identified
and its associated cluster index is sent out timbreID’s first
outlet. The example patch animates vowel classifications as
they occur.

4.2. Target-based Concatenative Synthesis

Some new challenges arise in the case of comparing a con-
stant stream of input features against a large database in
real-time. The vowel recognition example only requires a
feature database containing about 20 instances. To obtain
interesting results from target-based concatenative synthe-
sis, the database must be much larger, with thousands rather
than dozens of instances. This type of synthesis can be
achieved using the systems mentioned in section 1, and is
practiced live by the artist sCrAmBlEd?HaCkZ! using his
own software design [5]. The technique is to analyze short,
overlapping frames of an input signal, find the most similar
sounding audio frame in a pre-analyzed corpus of unrelated
audio, and output a stream of the best-matching frames at
the same rate and overlap as the input.

The example included with timbreID provides an audio
corpus consisting of 5 minutes of bowed string instrument
samples. As an audio signal comes in, an attempt at recon-
structing the signal using grains from the bowed string cor-
pus is output in real time. Audio examples demonstrating
the results can be accessed at www.williambrent.com.

In these types of applications, timbreID’s third inlet can
be used in order to search large feature databases. Classifi-
cation requests sent to the third inlet are restricted by a few
additional parameters. For instance, the search for a near-
est match can be carried out on a specified subset of the
database by setting the “search center” and “neighborhood”
parameters.

The concatenative synthesis example provides options
for different grain sizes and analysis rates, but with default
settings, the process of computing a BFCC feature for the
input signal, comparing it with 2500 instances in the feature
database, and playing back the best-matching grain occurs
at a rate of 43 times per second. Using a 2.91 GHz Intel Core
2 Duo machine running Fedora 11 with 4 GB of RAM, the
processor load is about 17%. By lowering the neighborhood
setting, this load can be reduced. However, reducing pro-
cessor load is not the only reason that restricted searches are
useful. A performer may also wish to control which region
of the audio corpus from which to synthesize.

A third parameter, “reorient” causes search center to be
continually updated to the current best match during active
synthesis. With matches occuring 43 times per second, the
search range adapts very quickly to changes in the input
signal, finding an optimal region of sequential grains from
which to draw.

227

http://www.williambrent.com


4.3. Timbre ordering

The timbre ordering examples use two different approaches
to sound segmentation: the first patch reads in pre-determined
onset/offset times for each of 51 percussion instrument at-
tacks, and the second automatically divides loaded samples
into grains that are 4096 samples in length by default. On-
set/offset labels for the first example were generated man-
ually in Audacity, exported to a text file, then imported to
a table in Pd. The percussive sound set included with this
example is small, and is intended to provide a clear demon-
stration of timbreID’s ordering capabilities. Figure 5 shows
a region of the patch that includes the table where order-
ing information is stored and 5 sliders that control feature
weighting.

Figure 5. 51 percussion sounds ordered based on a user-
specified weighting of 5 features.

Ordering is always performed relative to a user-specified
starting point. With 51 instruments, when an instrument in-
dex between 0 and 50 is supplied along with the “order”
message, timbreID will output the ordering list at its fourth
outlet for graphing. Using the 5 feature weight sliders, it is
possible to boost or cut back the influence of any particular
feature in the ordering process. The features implemented in
this patch are temporally evolving spectral centroid, spectral
flatness, zero crossing rate, loudness, and BFCCs.

After hearing the results of a particular ordering, the lev-
els of the feature weight sliders can be changed in order to
produce a new ordering and gain an understanding of the
effects of various features in the process. An ordering is
shown in the graph of Figure 5, where the y axis represents
instrument indices 0 through 50, and the x axis indicates
each instrument’s position in the ordering. It begins at in-

strument 0 with a drum and progresses through other drum
strikes followed by snares, a sequence of cymbal strikes, and
a sequence of wooden instruments. Ordering the set by start-
ing with a wooden instrument will produce a different result
that retains similarly grouped sequences. An expanded ver-
sion of this patch could be useful as a compositional aid for
exploring relationships between sounds in a much larger set,
offering paths through the sounds that are smooth with re-
spect to different sonic characteristics.

Two types of ordering are available: “raw” and “rela-
tive”. The graph in Figure 5 was produced with relative or-
dering, which starts with the user-specified instrument, finds
the nearest match in the set, then finds the nearest match
to that match (without replacement), and so on. The point
of reference is always shifting. Raw ordering begins with
the given instrument, then finds the closest match, the sec-
ond closest match, the third closest match (also without re-
placement), and so on. Orderings of this type start with a
sequence of very similar sounds that slowly degrade into
randomness, and usually finish with a sequence of similar
sounds—those that are all roughly equal in distance from
the initial sound, and hence, roughly similar to each other.

The second ordering example loads and segments arbi-
trary sound files. Loading a speech sample generates se-
quences of similar phonemes with a surprisingly continuous
pitch contour. Audio generated from this and other ordering
examples can be accessed at the author’s website.

4.4. Mapping sounds in timbre space

Figure 6. 847 speech grains mapped with respect to the 2nd

and 3rd BFCC.

Another way to understand how the components of a
sound set relate to one another is to plot them in a user-
defined timbre space. CataRT is the most recognized and
well developed system for this task; timbreID makes it pos-

228

http://www.williambrent.com


sible within Pd using GEM for two- and three-dimensional
plotting. In the provided example, the axes of the space can
be assigned to a number of different spectral features, in-
cluding zero crossing rate, amplitude, frequency, or any of
47 Bark-frequency cepstral coefficients. By editing the anal-
ysis sub-patch, additional features can be included. Figure
6 shows speech grains plotted in a space where values of
the second and third BFCCs are mapped to the x and y axes
respectively. RGB color can be mapped to any available
features as well.

Mousing over a point in the space plays back its ap-
propriate grain, enabling exploration aimed at identifying
regions of timbral similarity. The upper left region of fig-
ure 6 contains a grouping of “sh” sounds, while the central
lower region contains a cluster of “k” and “ch” grains. Other
phonemes can be located as well. In order to explore dense
regions of the plot, keyboard navigation can be enabled to
zoom with respect to either axis (or both simultaneously),
and move up, down, left, or right in the space.

Figure 7. 2400 string grains mapped with respect to ampli-
tude and fundamental frequency.

Figure 7 shows a plot of string sample grains mapped ac-
cording to RMS amplitude and fundamental frequency. Be-
cause the frequencies in this particular sound file fall into
discrete pitch classes, its grains are visibly stratified along
the vertical dimension.

Mapping is achieved by recovering features from tim-
breID’s database with the “feature list” message, which is
sent with a database index indicating which instance to re-
port. The feature list for the specified instance is then sent
out of timbreID’s fifth outlet, and used to determine the in-
stance’s position in feature space.

5. CONCLUSION

This paper has introduced some important features of the
timbreID analysis/classification toolkit for Pd, and demon-
strated its adaptability to four unique tasks. Pd external

source code, binaries, and the example patches described
above are all available for download at the author’s web-
site: www.williambrent.com. The remaining patches in the
example package—a cepstrogram plotting interface and a
percussion classification system that identifies instruments
immediately upon attack—were not described. The exam-
ple patches are simple in some respects and are intended to
be starting points that can be expanded upon by the user.

Future development will be focused on adding new fea-
tures to the set of feature extraction objects, implementing
a kD-tree for fast searching of large databases in order to
make concatenative synthesis more efficient, and developing
strategies for processing multiple-frame features of different
lengths in order to compare sounds of various durations.

6. REFERENCES

[1] W. Brent, “Cepstral analysis tools for percussive timbre
identification,” in Proceedings of the 3rd International
Pure Data Convention, São Paulo, Brazil, 2009.

[2] J. Bullock, “Libxtract: A lightweight library for audio
feature extraction,” in Proceedings of the International
Computer Music Conference, 2007.

[3] M. Casey and M. Grierson, “Soundspotter/remix-tv:
fast approximate matching for audio and video perfor-
mance,” in Proceedings of the International Computer
Music Conference, Copenhagen, Denmark, 2007.

[4] G. Holmes, A. Donkin, and I. Witten, “Weka: a ma-
chine learning workbench,” in Proceedings of the sec-
ond Australia and New Zealand Conference on Intel-
ligent Information Systems, Brisbane, Australia, 1994,
pp. 357–361.

[5] S. König, http://www.popmodernism.org/scrambledhackz.

[6] M. Puckette, T. Apel, and D. Zicarelli, “Real-time audio
analysis tools for pd and msp,” in Proceedings of the
International Computer Music Conference, 1998, pp.
109–112.

[7] D. Schwarz, G. Beller, B. Verbrugghe, and S. Britton,
“Real-time corpus-based concatenative synthesis with
catart,” in Proceedings of the COST-G6 Gonference on
Digital Audio Effects (DAFx), Montreal, Canada, 2006,
pp. 279–282.

[8] G. Tzanetakis and P. Cook, “Musical genre classifica-
tion of audio signals,” IEEE Transactions on Speech and
Audio Processing, vol. 10, no. 5, pp. 293–302, 2002.

[9] X. Zhang and Z. Ras, “Analysis of sound features for
music timbre recognition,” in Proceedings of the IEEE
CS International Conference on Multimedia and Ubiq-
uitous Engineering, 2007, pp. 3–8.

229

http://www.williambrent.com



