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ABSTRACT 

This paper presents a new method for sound synthesis. 
The method consists in mapping the histograms 
sequence of a cellular automata evolution onto a sound 
spectrogram. The data obtained from the histograms are 
in the form of sound spectral structures evolving in time 
in a natural fashion. The main problem of cellular 
automatas is the difficulty of control due to its 
unpredictability property. This mapping offers 
significant controllability characteristics which allow 
flexible processes for sound and instrument design. The 
sounds obtained with this mapping present natural 
behaviour and are capable of simulate acoustic 
instruments and other real sounds. 

1. INTRODUCTION 

Effective use of any digital synthesis technique depends 
on having good Control Data for the synthesis 
instrument. Control Data can be obtained from several 
sources. One approach commonly followed is to import 
them from another domain and to map them into the 
range of synthesis parameters [7]. In this research, 
Cellular Automata [1], or CA, will be considered as to 
be the Source of Control Data for sound synthesis & 
processing applications.  

The CA chosen for this study is based on the Gerhard 
& Schuster's hodge-podge machine [2]. A slightly 
different version of this CA was successfully used in a 
granular synthesis system called Chaosynth [4]. The 
states of a cell can be interpreted as follows: the state 
characterized by a minimum value 0 is called “healthy”. 
The state given by a maximum value V-1 is called “ill”. 
All other states in between are called “infected”. The 
transition rules are expressed as follows: 
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where the state of a cell at a time step t is denoted by 
mx,y[t]; x and y are the horizontal and vertical 
coordinates of the location of the cell in the CA. A and B 
represent respectively the number of ‘infected’ and ‘ill’ 
cells in the neighbourhood, r1 and r2 are constants, S 
stands for the sum of the states of all cells in the 
neighbourhood, and V is the number of possible states 
that a cell can adopt.  

We have chosen this CA mostly for its cyclic nature 
(Figure 1) which, among other things, easily allows us 
to work with different and, as large as we wish, range of 
cell values. The cyclic nature in a CA is characterized 
by two end states, positive feedback mechanisms and 

negative feedback mechanisms. By respecting this 
scheme it is possible to modify or create different CA 
rules for designing new cyclic CAs.  
 

 

Figure 1. One period of a cyclic CA 

2. MAPPING HISTOGRAMS ONTO 
SPECTROGRAMS 

We devised a mapping method based on a statistical 
analysis of the CA evolution. We estimate the 
Probability Distributions of the cell values for each CA 
generation by Histogram measurements of each CA 
image [5]. The histogram of a digital image with grey 
levels in the range [0, L - 1] is a discrete function 

nnrp kk /)( =             (1) 

where rk is the kth grey level, nk is the number of 
pixels in the image with that grey level, n is the total 
numbers of pixels in the image, and k = 0, 1, 2, …, L - 1. 
Loosely speaking, p(rk) gives an estimate of the 
probability of occurrence of grey-level rk [3]. 

We have found zones in the histograms consisting in 
narrow bands (sometimes with a width of just one 
colour) clearly separated one from the others. By 
examining the evolution in time of those narrow bands, 
we surprisingly found that their envelopes were very 
similar to the amplitude envelopes of sounds partials. 
With this in mind, our mapping will be to consider the 
Histograms Sequence of the CA evolution as to be a 
Sound Spectrogram. Considering that the time domain is 
common for both, the histograms sequences and the 
spectrogram, the histogram’s sample space domain 
maps onto the spectrogram’s frequency domain and, the 
histogram’s probability domain maps onto the spectral 
magnitude domain. 

3. HISTOGRAMS AND BEHAVIOURS 

Different CA behaviours offer different histogram 
typologies. A ‘quasi-synchronic’ behaviour (in which all 
the cells reach the maximum state almost at the same 
time) offers a type of histogram from which we can 
obtain sets of structured data for both, sinusoidal and 
noise sound components. After the maximum state is 
reached, “distorted circumferences” patterns will appear. 
The contours of these shapes will create narrow bands or 
peaks in the histogram. From here, the cell values grow 
towards the maximum state and the boundaries of the 



  
 
distorted circumferences become “blurred”, creating 
wide bands in the histogram (see Figure 2).  At each 
cycle of the CA this process is repeated with the 
following interesting characteristics: A) At each cycle, 
the CA self-organizes through the same set of 
predominant colours. These set of colours vary 
depending on the CA parameter values. That will create 
the time evolving structures in the histograms sequence. 
B) At each cycle, the distorted circumferences adopt 
slightly different shapes. That will create time varying 
amplitudes in the structures.  
 

 

Figure 2: Different CA configurations in the ‘quasi-
synchronic’ behaviour and the histograms they 
produce: narrow bands (left) and wide bands (right). 

Figure 3 shows the histograms sequence of a CA 
evolution and the different zones we can find on it. SC1 
and SC2 are zones consisting of narrow band structures 
which represent Control Data suitable for sinusoidal 
sound components. NC Zone consists of wide bands 
correlated in amplitude with the previous structures and 
can provide Control Data for correlated noise bands.  

We can see also that the histograms sequence is a 
good reflect of the CA rules, parameter values, and 
hence of the CA behaviour. Peaks E1 and E2 are the 
probabilities of the two end estates. There is a GAP with 
zero probabilities due to the addition of constant K in 
Rule 2 (like an offset) and due to the end of SC1 Zone 
which has a maximum value due to r1 and r2 in Rule 1. 
This behaviour is achieved by many combinations of the 
CA parameters: CA size around 200x200 cells; by 
working with thousands of states (V), the histogram 
space is enlarged fostering interesting structures for 
sinusoidal components to appear in SC2 Zone. K as 
20~30 % of V, and r1 and r2 can be set to 2. 

 

 

Figure 3. Frontal plot of the histograms sequence with 
the effects of the rules (‘quasi-synchronic’ behaviour). 

CAs present different forms of long-term behaviours. 
Regarding sound evolution, we can differentiate two 
generic forms: long-term behaviours that will bring 
structures for sustained sounds and long-term behaviours 
that will bring structures for non-sustained sounds. The 
previously mentioned CA behaviour is an example of the 
formers. CA definitions with few neighbours are likely 
to give structures for non-sustained sounds. That is the 
case of considering Neumann neighbourhoods [2], or 
even fewer neighbours, for example considering the case 
where the central cell is not a neighbour. Due to 
considering fewer neighbours, the divisor of Rule 2 is 
lower than with Moore neighbourhoods, and thus, 
‘infected’ cells have great chances of getting 
immediately ‘ill’; there are many combinations in the 
neighbourhoods that induce this effect. In the 
neighbourhood, ‘ill’ cells make the numerator higher, 
whereas the denominator does not grow by ‘ill’ or 
‘healthy’ cells. Thus, having just one ‘ill’ neighbour, 
then in case of not having any other ‘infected’ neighbour 
than the central cell, this cell becomes automatically ‘ill’. 
That makes that the CA reaches a long-term behaviour 
with cells that oscillate only in between 0, cell values 
corresponding to SC1 Zone and V-1. While reaching this 
long-term behaviour, the rest histogram’s bins fade out 
to zero, creating structures of sound releases. These 
structures are interesting because there appear different 
release times for different histogram bins. It is also clear 
this process in the images of the CA evolution (Figure 
4). There will remain structures in the first, the SC1 
Zone and the last histogram’s bins. All the CA cells are 
concentrated in these few positions, so their time 
evolution will be very flat, and can be discarded.  

 

 

Figure 4. CA evolution that creates non-sustained 
structures in the histograms sequence. 

4. SPECTRAL STRUCTURES 

As we have already seen in previous section, with 
different CA behaviours we can find many types of 
structures with different time evolutions. 

Time varying amplitudes can be considered in 
different ways. The original amplitude evolution of the 
histogram’s bins usually present oscillatory shapes, and 
it could be desired to perform an amplitude envelope 
extraction to get a smoother evolution (Figure 5). 

 

Figure 5. Time evolution of one histogram’s bin from 
SC2 Zone in the ‘quasi-synchronic’ behaviour (solid 
line), and its amplitude envelope (dotted line). 

When the partials are in the form of narrow bands, it 
is possible to obtain frequency trajectories. Especial 
attention deserves some correlated glissandi appearing 
in attacks (Figure 6). 



  
 

 

Figure 6. Structures from SC2 Zone showing glissandi 
and a noisy structure in the attack. 

The Self-Organization process of CAs also gives 
other interesting noisy structures. In Figure 6 and 7 we 
can see a noisy structure in the attack that disappears 
while the partials emerge. Here, there are sets of peaks 
that may be candidates for Transients. 

 

Figure 7. Structures from SC2 Zone showing 
correlated amplitudes and a noisy structure in the 
attack. 

In synthesis it is common to perform a reorganization 
of the structures (by frequency assignment) in order to 
design the spectrogram. 

5. CONTROL 

The predictability of the outcome of a CA evolution is 
an open problem [11].  Music & Sound Systems based 
on CA may offer more or less degree of flexibility; but 
being under unpredictability conditions implies control 
limitations and thus, restrictions in the Design Process. 
Consequently, a high factor of aleatority is present in the 
output. Our work gives improvements in this issue. 
Firstly, the mapping presented in this paper links to a 
CA analysis giving structured data in the form of 
Spectral Magnitude. Thus, we can establish a sound 
design process from here using many of the existing 
spectral signal processing techniques [9]. Secondly, with 
this mapping it is possible to work with a certain degree 
of predictability. As we have seen, the CA rules and 
parameters are very well reflected in the histograms. 
Thus, it is possible to find direct relations between the 
CA parameter values and their effects in the histograms. 
Most of them refer to the spectral dimension, and very 
little to the time dimension. For instance, the lower K’s 
value is, the lower the GAP is. As a consequence, in the 
‘quasi- synchronic’ behaviour, we will have more noise 

bands in NC Zone. It is also very intuitive to see that 
with a large GAP we may lose noise bands. K also 
contributes to the attack delays; the lower K’s value is, 
the more delay (in these cases, delays are also 
proportional to the histogram bins). r1 and r2 control the 
tendency for a ‘healthy’ cell to be infected by ‘infected’ 
neighbours  and by ‘ill’ neighbours respectively. When 
working in the ‘quasi- synchronic’ behaviour, we could 
consider they act in parallel; the lower the values, the 
wider SC1 Zone is. If the values are extremely low, the 
histograms sequence will evolve presenting only two 
peaks in the first and the last bins. On the contrary, if the 
values are higher than the number of neighbours, the 
histograms sequence will evolve blocking in the first 
bin. About the time domain, we have seen that by 
considering few neighbours it is possible to control, in 
general terms, the time-evolution of the amplitude 
envelopes. Once analyzed how non-sustained structures 
appear, it is possible to induce the same effect working 
with Moore neighbourhoods, by modifying the rules. 
One way we can simulate fewer neighbours is by 
dividing A and B by two. With this we can get the same 
kind of non-sustained structures than working with 
Neumann Neighbourhoods. 

We have found an Invariance Property in the 
Histograms by performing the following experiment: 
different runs of the same CA definition, with enough 
time to reach the long-term behaviour, and each one 
starting from different initial configurations consisting 
of noisy images generated with uniform random 
distributions. By looking in the histogram at a zone of 
narrow bands (peaks of prominent colours like SC1 or 
SC2 in the ‘quasi-synchronic’ behaviour) we have 
observed that the histograms’ structure in terms of peak 
locations remains exactly the same (all the CAs self- 
organize through the same set of prominent colours). 
Apart from this, the relative amplitude of the peaks 
remains very similar. The time variations of the 
amplitude envelopes (fluctuations included) are slightly 
different for every CA. This invariance property remains 
present even with changes in the CA sizes (as long as 
these changes do not induce a different behaviour).  

Thus, this is a degree of predictability with 
applications, for example in the context of our Mapping; 
this Invariance Property is useful for Instrument Design. 
Considering that every process done from the 
histograms’ data can be “recorded”, once it is designed a 
sound with a desired structure, it will be possible to 
automatically obtain multiple instances of the original 
sound. Each instance will have the same structure of the 
original sound, but with differences in the time varying 
amplitude envelopes. Thus, we can design an instrument 
that will not ever output the same exact sound twice and 
therefore, capable of generating more natural sequences 
of notes. 

6. SYNTHESIS 

We have tested the CA Control Data with two synthesis 
& processing techniques: additive synthesis with bank 
of oscillators and subtractive synthesis by FFT 
convolution.  

In this section we show an example using real-time 
subtractive synthesis of white noise to produce the 



  
 
spectra. The CA Control Data applied to this process is 
illustrated in Figure 8. It comes from a CA with 
modifications in the rules to get a non-sustained 
structure. Having discarded the firsts and the last bins, it 
results in a compact structure due to the low values of K 
and V (K=8, V=100, r1 = r2 = 2). 

 

 

Figure 8. Non-sustained structure after envelope 
extraction.  

Figure 9 shows the process. White noise is converted 
to the frequency-domain by the Short-Time Fourier 
Transform (STFT) using the Real FFT. We will proceed 
with the parameters mapping of our CA Control Data so 
as to become a frequency domain signal. We will 
consider the bins of the histogram as to be bins of the 
Real FFT; for each CA generation we will construct, 
with N points, one half of the symmetric FFT that would 
correspond to the analysis of a 2N-point real-valued 
input frame [6]. In our example, the value of N is 512, 
and the CA structure has around 90 bins, so we will 
have to add zero-valued bins up to get a structure of 512 
bins. We adjust the CA structure as to start in the bin 
corresponding to the desired minimum frequency by 
adding the correspondent zero-valued bins to the left. 
Then we complete the FFT structure by adding zero-
valued bins to the right up to N. We extract the 
amplitude envelopes and apply an appropriate amplitude 
scale. Then, at a certain ratio, the CA Control Data will 
be sent (for each CA generation) to the FFT convolution 
filter. Finally, the signal is converted back to the time-
domain by Overlap-Add method (OLA).  

 

 

Figure 9. Real-Time Filtering of white noise with the 
CA Control Data.  

With this CA structure and this process (establishing 
the duration in the range of 1 to 2 seconds) we obtained 
a reverberated explosive sound. 

7. CONCLUSION AND FURTHER WORK 

In this paper we have presented a new method for 
spectrograms design, based on histogram measurements 
of a CA evolution. We have described a number of ways 
for obtaining spectral structures for both, sinusoidal and 
noise sound components in both, sustained and non-
sustained modes. We also have addressed controllability 
aspects useful for sound design and, we have presented 
an Invariance Property useful for instrument design. 

The synthesis results obtained so far show great 
potential. Cellular Automatas are computational models 
inspired in Nature and with few parameter specifications 
we obtain complex structures evolving in a natural 
fashion. Also, with different rules and, modifications in 
other aspects like boundary conditions, initial CA 
configurations, neighbourhood specifications, etc. there 
is a great variety of possible structures to be obtained.  

We are planning to test the potential of this method 
according to Spectral Modelling procedures and 
techniques [8, 10]. In the sound design processes we 
have not mixed synthesis techniques and we are also 
planning to do so within the context of Spectral Fusion 
studies. 
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