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ABSTRACT

Musically meaningful genetic operators have become an 
accepted  aspect  of  evolutionary composition despite  a 
lack of  objective evidence to  support  their  use.   This 
research  investigates  the  impact  of  four  musically 
meaningful mutation operators  from previous  research 
on  population  fitness  relative  to  a  standard  mutation 
operator.   Two-dimensional  rhythmic  patterns  are 
evolved using user-defined fitness trajectories. Although 
none  of  the  meaningful  operators  has  led  to  drastic 
improvements,  the  Invert-All  operator  has  been 
consistently  successful.  These  experimental  results 
suggest  that  the combination of the Invert  and Rotate 
mutation  operators  will lead to  the  best  improvement 
over the standard mutation.

1. INTRODUCTION

Musically meaningful genetic operators have been a part 
of evolutionary composition for over a decade despite a 
dearth  of  experimental data  to  justify their  use.   We 
investigate  the  effects  of  four  musically  meaningful 
mutation operators (MMMOs) on populations of simple 
rhythmic  patterns.   The  goal  of  this  project  is  to 
determine the  individual effects  of  these  MMMOs on 
population  fitness  and  provide  a  numerical  basis  for 
justifying  their  use  in  evolutionary  composition  of 
rhythms.  The performance of each MMMO is judged in 
relation to a standard mutation operator.

The  remainder  of  this paper  is  organized  into  five 
sections:  a  background  on  MMMOs,  the  approaches 
used in this research, the results of these approaches, and 
a discussion of the results.  The discussion of results is 
followed by our  conclusions and a summary of future 
work.

2. BACKGROUND

The introduction of MMMOs to the field of evolutionary 
composition  was  first  made  in  Biles'  “GenJam”  [1], 
although  that  research  did  not  conclusively state  the 
impact  of  this new breed  of  mutations  on  population 
fitness.  The theory behind meaningful genetic operators 
extends  back  to  the  original  research  on  reordering 
operators summarized in [4].  Most of the research from 
this  time  manifested  as  mutation-inspired  crossover 
operators rather than standalone mutation operators.  In 
relation to music, operators are considered “meaningful” 
when  their  algorithms  take  into  account  the  musical 

semantics of the input representation as well as principles 
of music theory.  The purpose of these knowledge-based 
operators  is  to  evolve  better  individuals  faster  than 
"dumb" classic operators [1].

Biles defines mutation operators  for  populations  of 
measures  including  reverse,  rotate  right,  invert,  sort 
notes  ascending,  sort  notes  descending,  and transpose 
notes.   At a second level composed of measure-based 
phrases, he implements mutators such as genetic repair, 
super  phrase,  lick thinner,  and orphan phrase.   These 
operators attempt to maintain diversity and quality in the 
phrase populations by weeding out  poor  or  frequently 
used measures and building new phrases from the best or 
infrequently used measures.   The two  most  successful 
mutators  replace  existing  measures  with  the  least 
frequently occurring measures  in the entire population 
[1].

Papadopoulos  and  Wiggins  [6]  describe  significant 
improvement in the evolution of melodic patterns using a 
restricted copy mutation which copies melodic fragments 
of  a  constant  size  to  metrically  logical  locations 
elsewhere in the piece.  The impact of this mutation is 
limited  by the  number  of  valid  locations  to  which  a 
fragment can be copied.  Thus, the copy mutation could 
potentially reduce  the  population diversity by creating 
many similar mutants.  

Tokui  and  Iba  [7]  describe  a  MMMO,  Timbre 
Exchange, which exchanges timbres amongst instruments 
within an individual.  The same research also  uses the 
rotate and reverse operators inspired by [1].  The impact 
of these mutators on population fitness or diversity is not 
addressed.

Dostál's [3] four MMMOs accentuate quiet notes that 
match  strong  rhythms  in  a  piece  of  source  music, 
syncopate  strong  beats,  randomly change  the  type  of 
notes  played  in  a  given  measure,  and  even  rewrite 
rhythms to match the source music.  The operators are 
the sole basis of recombination and mutation and without 
their influence a population of rhythms cannot  achieve 
successful results.

3. METHODS

Throughout  this  paper  the  term  “gene”  is  used  to 
describe  a  boolean  value  indicating  the  presence  or 
absence of  a  musical beat.  The  terms “mutator”  and 
“MMMO”  refer  to  a  “musically meaningful  mutation 
operator”.

To isolate the effectiveness of the different operators 
from  potential  problems  caused  by  an  exponentially 
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complex search domain, this research focuses solely on 
the generation of rhythmic music.  A genetic individual is 
represented by a two-dimensional matrix or pattern with 
a cell, p[x][y], denoting the beat value of instrument x at 
time y in pattern p as in [7].  The slice p[x] represents an 
instrument part or row.

Fitness  evaluation  is  loosely  based  on  Birchfield's 
multi-level system of user-defined fitness trajectories [2] 
and consists of a level of columnar and row trajectories 
defined  over  each pattern.   Columnar  trajectories  are 
defined  by cubic  Bézier  curves  and  can  be  smoothly 
connected between patterns by setting the initial value of 
a  pattern's  trajectory  to  the  final  value  of  the  same 
trajectory in the previous pattern.  Row trajectories are 
defined by the  rows to  be affected  by the  trajectory's 
rule.

A  pattern's  fitness  is  the  sum  of  the  squared 
differences between its trajectories' expected values and 
the pattern's actual values and is, thus, to be minimized. 
The current population is defined as P(t) = mrand (c (s (P(t 
– 1)))) for a selection function s, a crossover operator c, 
and a randomly mutator  mrand selected from the set  of 
available MMMOs (Table 1.).
• Classic: Mutates a randomly selected gene or 

randomly mutates all genes (S)
• Invert-All: Exchanges an individual's rests for beats 

and its beats for rests (L)
• Invert-One: Invert the values of one instrument row 

(M)
• Reverse-All: Reverse the temporal order of values in 

all instrument rows (L)
• Reverse-One: Reverse the temporal order of values 

in one or more instrument rows (M)
• Rotate-All: Rotate the values of one or more 

instrument rows to the right by a specified or random 
amount (L)

• Rotate-One-N: Rotate the values of a single 
instrument row by n time units (M)

• Rotate-One: Rotate the values of a single instrument 
row by 1 time unit (S)

• Timbre-Exchange: Exchange instrument parts 
between two randomly selected instruments (S).

Table 1. Mutator descriptions followed by impact 
classifications (Small, Medium, and Large)

Each mutator  affects the individuals it mutates to  a 
different degree.  The degree of change, or “impact”, a 
mutator affects on an individual can be quantified by the 
percentage of genes whose locus or value has changed. 
The  Invert  mutator,  for  example,  has  an impact  of  1 
because it swaps all beats and silences in a pattern which 
affects  the  entire  pattern.   In  contrast,  the  Classic 
mutator performs a random mutation of each gene based 
on the gene's own mutation probability so its impact is pm 

where pm is the probability of mutation of each gene.  To 
allow control  over  the  use  of  mutators  with different 
impacts, each mutator is intuitively classified into one of 
three  groups:  “small”,  “medium”,  and  “large”  impact 
(see Table 1.).

One  assumption  made  in  this  research  is  that  the 
closer an individual gets to the global optimum, the less 
important  it  becomes to  stimulate  large scale diversity 
within it.  If a solution stagnates around a local optimum, 
a  dramatic  mutation  may  introduce  the  necessary 
diversity for it to move on.  However, if an individual is 
already  quite  close  to  a  global  optimum,  a  major 
mutation  will  destroy  generations  of  quality  building 
blocks.  For this implementation, limits on mutators of 
each impact  type classified above (Table 1.)  are  hard-
coded such that large impact mutators cannot be used on 
an individual when the individual's raw fitness value is 
less than 30 and medium impact mutators cannot be used 
when  that  value  is  less  than  10.    The  goal  of  this 
annealing configuration  is  to  protect  quality solutions 
from overly dramatic mutations.

4. RESULTS

Each  experimental  trial  was  run  with  a  mutation 
probability of  0.02,  a  crossover  probability of  0.6,  an 
initially random population of 200, and a population of 
20 at  the end of each generation.  At the beginning of 
each  generation  after  the  first,  20  children  were 
generated from the 20 parents.  Unless stated otherwise, 
all trials were all also tested with two fitness trajectories: 
temporal  beat  density  and  instrument  beat  density. 
Temporal  beat  density  refers  to  the  number  of 
instruments playing simultaneously at any point in time. 
Instrument  beat  density refers  to  the  number  of  total 
beats  played  in  each  instrument  row.   The  former 
trajectory controls the dynamic of the pattern while the 
latter trajectory simply limits the complexity of any one 
instrument pattern.

The  effectiveness  of  the  MMMOs  was  tested  by 
pairing  each  one  with  the  Classic  mutator.   These 
mutator pairs were used to evolve 16 beat, 8 instrument 
(16×8)  patterns  and  16  beat,  16  instrument  (16×16) 
patterns over 25 individual trials of 50 generations for 
16×8 patterns  and 80  generations  for  16×16 patterns. 
For  these  preliminary  experiments,  these  pattern 
dimensions were estimated as common dimensions for 
practical  use.   The  measurement  of  success  was  the 
average of the best fitness value for each generation over 
all  25  trials  as  well  as  the  average  of  the  average 
population  fitness  per  generation.  Finally,  all  of  the 
mutators  were  tested  together  under  the  same 
conditions.  The effectiveness of each group of mutators 
was judged by its performance relative to  the standard 
mutation.

A similar set of trials to the above mutator tests were 
run in which 25 different populations were evolved with 
and without  mutator  limitations.   However,  instead of 
stopping after a fixed number of generations, the system 

Mutator Example

None 01101111
Classic 00101101
Rotate Right 1 10110111

Table 2. Examples of two mutation operators
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was  configured  to  stop  after  the  best  fitness  value 
remained unchanged for ten generations.  The total time 
required  to  perform  the  25  trials  was  recorded  to 
determine the difference between average time per trial 
for trials with and without mutator limitations.

5. DISCUSSION

The  limited/unlimited  mutator  trials  revealed  no 
difference between limited and unlimited use of large and 
medium impact mutators.  In both sets of 25 trials, the 
tenth  consecutive  unchanged  population  fitness  value 
was reached in the same amount of time with nearly the 
same best  fitness value for the final generations.   One 
explanation for the similar behavior between limited and 
unlimited mutator populations is the relative simplicity of 
the mutations on the test  hardware.  When tested on a 
slower system, each generation takes minutes to evolve 
instead of seconds.  In such an environment, the limited 
mutators would benefit from performing fewer complex 
computations.   Another  explanation  for  the  similar 
behavior  is  that  each  population  adapts  to 
disadvantageous  mutations  to  good  individuals  by 
keeping enough similar individuals in the population to 
allow the destruction of one by improper mutation.

For the smaller 16×8 patterns, the Invert-All, Rotate-
All,  Rotate-One,  and  Reverse-All mutators  performed 
better  paired  with  the  Classic  mutator  than  the 
standalone Classic mutator.  The trials using all mutators 
also  outperformed the  Classic mutator.   However,  all 
mutators  used  together  did  not  perform  better  than 

Invert-All, Rotate-All, and Rotate-One mutators  paired 
with  the  Classic  mutator.   This  suggests  that  certain 
mutators detract from overall performance.

For  the  larger  16×16 patterns,  both  Invert  mutator 
variants  and  the  Rotate-One-N  mutator  outperformed 
the Classic mutator.  In these trials the combination of all 
mutators  performed  worse  than  the  Classic  mutator. 
Interestingly,  the  best  mutator  for  16×16  patterns 
(Rotate-One-N)  was  the  worst  mutator  for  16×8 
patterns.   The  Invert-All  mutator  was  the  only 
meaningful mutator  to  consistently improve fitness for 
both pattern sizes.

The results of the 16×8 and 16×16 trials (Tables 4 
and  5)  show  little  consistency  between  successful 
mutator combinations for the different pattern sizes.  The 
worst  mutator  for the 16×8 patterns, Rotate-One-N, is 
the best mutator for the 16×16 patterns.  Similarly, the 
single-row  invert  mutator  performs  poorly  on  16×8 
patterns  while  besting  the  Classic  mutator  on  16×16 
patterns.  An obvious solution to this drastic difference 
in mutator  performance for different pattern sizes is to 
use all mutators  and let  the GA adapt  to  pattern  size 
accordingly.  Unfortunately, the trials using all mutators 
on  16×16  patterns  reveal  no  improvement  over  the 
Classic mutator by itself.  A lack universal improvement 
regardless  of  pattern  size  cannot  justify  the 
computational complexity of  the non-Classic mutators. 
An approach for  future  work  would be to  experiment 
with  different  combinations  of  the  most  successful 
mutators for both pattern sizes to see if any combinations 
would perform better than all mutators together.

Figure 3. Mutator comparison on 16×8 patterns

Mutator Best Avg. Bests 
Classic

Invert-All 8.20 8.36 Y
Rotate-All 7.97 8.44 Y
Rotate-One 8.63 9.03 Y
All mutators 8.70 9.3 Y
Reverse-All 9.59 9.67 Y
Timbre-Exchange 9.96 10.04 -
Classic 9.87 10.04 -
Reverse-One 9.82 10.34 N
Invert-One 10.01 10.37 N
Rotate-One-N 9.92 10.98 N

Table 4. Fitness values for last generation of 16×8 
patterns sorted by average population fitness

Figure 4. Mutator comparison on 16×16 patterns

Mutator Best Avg. Bests 
Classic

Rotate-One-N 14.27 15.85 Y
Invert-All 18.04 18.28 Y
Invert-One 18.04 18.36 Y
Classic 19.63 19.96 -
Rotate-One 18.97 20.24 N
Timbre-Exchange 19.98 20.27 N
All mutators 17.99 20.32 N
Reverse-One 21.02 22.11 N
Reverse-All 22.11 22.35 N
Rotate-All 22.99 23.34 N

Table 5. Fitness values for last generation of 16×16 
patterns sorted by average population fitness
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The  addition  of  domain  knowledge  to  genetic 
operators  in the form of rules should cause the GA to 
search a more constrained solution space.  Thus, the GA 
with domain knowledge is not expected to find solutions 
that  the standard GA cannot also find, but it could be 
expected  to  find  those  same  solutions  in  less  time. 
However,  the more domain knowledge integrated  into 
the operators, the smaller the solution space becomes.  If 
domain rules  are  not  prerequisites  for  evolution  of  a 
valid phenotype,  they could exclude original solutions 
that might have otherwise evolved by chance.

6. CONCLUSION

We have tested  the effects  of  four  types of  musically 
meaningful mutation operators in the domain of rhythmic 
music with eight mutator variants.  The performance of 
these operators has been compared to that of a standard 
mutation operator to determine if the use of MMMOs is 
associated  with  an  improvement  in overall population 
fitness.

Each  of  the  eight  mutation  operator  variants  was 
paired with the  Classic mutator  and populations were 
evolved in 25  independent  trials  for  16×8  and 16×16 
patterns.   An  additional  set  of  25  trials  using  all 
meaningful mutator variants and the Classic mutator was 
run for both pattern sizes.

Based on the results from trials for both sizes, the best 
combination of mutators  includes all of the Invert  and 
Rotate mutator variants.  The Reverse mutators do not 
lead to a significant improvement in smaller patterns and 
they perform worse than the Classic mutator  for larger 
patterns.  This latter case is most likely due to the effects 
of the limited mutations rules.  For larger patterns the 
initial fitness values will be much higher than those of the 
smaller patterns.   Thus,  the large impact  mutators  are 
used  in the  evolution of  larger patterns  for  at  least  5 
more generations than in the evolution of small patterns. 
The longer these poorer mutators are allowed to run, the 
greater their effect on overall fitness.

Despite the improvement achieved by some MMMOs 
over the standard operators,  the best improvements do 
not lead to drastically better solutions than the standard 
mutation  operators  within  the  scope  of  the  current 
experiments.   The Rotate-One-N mutator  improves on 
the Classic mutator  by 20% for  16×16 patterns.   The 
next best improvement by the Invert-All mutator is only 
8%.  Correspondingly for the 16×8 patterns, the best and 
next  best  improvements  over  the  standard  classic 
mutation are 17% and 16% with Invert-All and Rotate-
All respectively.

These improvements, while insignificant in the context 
of this research, could lead to drastically better solutions 
for more difficult problems.  There is not solid evidence 
to  support  a claim that improvements due to  MMMOs 
scale linearly with an increase in pattern  size.  Future 
research in this area will need to explore the scaling of 
improvements  due  to  meaningful operators  in a  more 
complex  search  domain  to  determine  if  the  results 
presented here are truly universal.

Future work will include the implementation of more 
fitness  functions,  replacement  of  Bézier  curves  with 

NURBs, and a redefinition of fitness calculation in terms 
of Pareto-optimal comparisons.
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