
EFFECTS OF MUSICALLY MEANINGFUL OPERATORS IN
EVOLUTIONARY COMPOSITION

John Huddleston Jianna Zhang
Western Washington University

Computer Science
516 High St.

Bellingham, WA 98225

ABSTRACT

Musically meaningful genetic operators have become an
accepted aspect of evolutionary composition despite a
lack of objective evidence to support their use. This
research investigates the impact of four musically
meaningful mutation operators from previous research
on population fitness relative to a standard mutation
operator. Two-dimensional rhythmic patterns are
evolved using user-defined fitness trajectories. Although
none of the meaningful operators has led to drastic
improvements, the Invert-All operator has been
consistently successful. These experimental results
suggest that the combination of the Invert and Rotate
mutation operators will lead to the best improvement
over the standard mutation.

1. INTRODUCTION

Musically meaningful genetic operators have been a part
of evolutionary composition for over a decade despite a
dearth of experimental data to justify their use. We
investigate the effects of four musically meaningful
mutation operators (MMMOs) on populations of simple
rhythmic patterns. The goal of this project is to
determine the individual effects of these MMMOs on
population fitness and provide a numerical basis for
justifying their use in evolutionary composition of
rhythms. The performance of each MMMO is judged in
relation to a standard mutation operator.

The remainder of this paper is organized into five
sections: a background on MMMOs, the approaches
used in this research, the results of these approaches, and
a discussion of the results. The discussion of results is
followed by our conclusions and a summary of future
work.

2. BACKGROUND

The introduction of MMMOs to the field of evolutionary
composition was first made in Biles' “GenJam” [1],
although that research did not conclusively state the
impact of this new breed of mutations on population
fitness. The theory behind meaningful genetic operators
extends back to the original research on reordering
operators summarized in [4]. Most of the research from
this time manifested as mutation-inspired crossover
operators rather than standalone mutation operators. In
relation to music, operators are considered “meaningful”
when their algorithms take into account the musical

semantics of the input representation as well as principles
of music theory. The purpose of these knowledge-based
operators is to evolve better individuals faster than
"dumb" classic operators [1].

Biles defines mutation operators for populations of
measures including reverse, rotate right, invert, sort
notes ascending, sort notes descending, and transpose
notes. At a second level composed of measure-based
phrases, he implements mutators such as genetic repair,
super phrase, lick thinner, and orphan phrase. These
operators attempt to maintain diversity and quality in the
phrase populations by weeding out poor or frequently
used measures and building new phrases from the best or
infrequently used measures. The two most successful
mutators replace existing measures with the least
frequently occurring measures in the entire population
[1].

Papadopoulos and Wiggins [6] describe significant
improvement in the evolution of melodic patterns using a
restricted copy mutation which copies melodic fragments
of a constant size to metrically logical locations
elsewhere in the piece. The impact of this mutation is
limited by the number of valid locations to which a
fragment can be copied. Thus, the copy mutation could
potentially reduce the population diversity by creating
many similar mutants.

Tokui and Iba [7] describe a MMMO, Timbre
Exchange, which exchanges timbres amongst instruments
within an individual. The same research also uses the
rotate and reverse operators inspired by [1]. The impact
of these mutators on population fitness or diversity is not
addressed.

Dostál's [3] four MMMOs accentuate quiet notes that
match strong rhythms in a piece of source music,
syncopate strong beats, randomly change the type of
notes played in a given measure, and even rewrite
rhythms to match the source music. The operators are
the sole basis of recombination and mutation and without
their influence a population of rhythms cannot achieve
successful results.

3. METHODS

Throughout this paper the term “gene” is used to
describe a boolean value indicating the presence or
absence of a musical beat. The terms “mutator” and
“MMMO” refer to a “musically meaningful mutation
operator”.

To isolate the effectiveness of the different operators
from potential problems caused by an exponentially

 220

complex search domain, this research focuses solely on
the generation of rhythmic music. A genetic individual is
represented by a two-dimensional matrix or pattern with
a cell, p[x][y], denoting the beat value of instrument x at
time y in pattern p as in [7]. The slice p[x] represents an
instrument part or row.

Fitness evaluation is loosely based on Birchfield's
multi-level system of user-defined fitness trajectories [2]
and consists of a level of columnar and row trajectories
defined over each pattern. Columnar trajectories are
defined by cubic Bézier curves and can be smoothly
connected between patterns by setting the initial value of
a pattern's trajectory to the final value of the same
trajectory in the previous pattern. Row trajectories are
defined by the rows to be affected by the trajectory's
rule.

A pattern's fitness is the sum of the squared
differences between its trajectories' expected values and
the pattern's actual values and is, thus, to be minimized.
The current population is defined as P(t) = mrand (c (s (P(t
– 1)))) for a selection function s, a crossover operator c,
and a randomly mutator mrand selected from the set of
available MMMOs (Table 1.).
• Classic: Mutates a randomly selected gene or

randomly mutates all genes (S)
• Invert-All: Exchanges an individual's rests for beats

and its beats for rests (L)
• Invert-One: Invert the values of one instrument row

(M)
• Reverse-All: Reverse the temporal order of values in

all instrument rows (L)
• Reverse-One: Reverse the temporal order of values

in one or more instrument rows (M)
• Rotate-All: Rotate the values of one or more

instrument rows to the right by a specified or random
amount (L)

• Rotate-One-N: Rotate the values of a single
instrument row by n time units (M)

• Rotate-One: Rotate the values of a single instrument
row by 1 time unit (S)

• Timbre-Exchange: Exchange instrument parts
between two randomly selected instruments (S).

Table 1. Mutator descriptions followed by impact
classifications (Small, Medium, and Large)

Each mutator affects the individuals it mutates to a
different degree. The degree of change, or “impact”, a
mutator affects on an individual can be quantified by the
percentage of genes whose locus or value has changed.
The Invert mutator, for example, has an impact of 1
because it swaps all beats and silences in a pattern which
affects the entire pattern. In contrast, the Classic
mutator performs a random mutation of each gene based
on the gene's own mutation probability so its impact is pm

where pm is the probability of mutation of each gene. To
allow control over the use of mutators with different
impacts, each mutator is intuitively classified into one of
three groups: “small”, “medium”, and “large” impact
(see Table 1.).

One assumption made in this research is that the
closer an individual gets to the global optimum, the less
important it becomes to stimulate large scale diversity
within it. If a solution stagnates around a local optimum,
a dramatic mutation may introduce the necessary
diversity for it to move on. However, if an individual is
already quite close to a global optimum, a major
mutation will destroy generations of quality building
blocks. For this implementation, limits on mutators of
each impact type classified above (Table 1.) are hard-
coded such that large impact mutators cannot be used on
an individual when the individual's raw fitness value is
less than 30 and medium impact mutators cannot be used
when that value is less than 10. The goal of this
annealing configuration is to protect quality solutions
from overly dramatic mutations.

4. RESULTS

Each experimental trial was run with a mutation
probability of 0.02, a crossover probability of 0.6, an
initially random population of 200, and a population of
20 at the end of each generation. At the beginning of
each generation after the first, 20 children were
generated from the 20 parents. Unless stated otherwise,
all trials were all also tested with two fitness trajectories:
temporal beat density and instrument beat density.
Temporal beat density refers to the number of
instruments playing simultaneously at any point in time.
Instrument beat density refers to the number of total
beats played in each instrument row. The former
trajectory controls the dynamic of the pattern while the
latter trajectory simply limits the complexity of any one
instrument pattern.

The effectiveness of the MMMOs was tested by
pairing each one with the Classic mutator. These
mutator pairs were used to evolve 16 beat, 8 instrument
(16×8) patterns and 16 beat, 16 instrument (16×16)
patterns over 25 individual trials of 50 generations for
16×8 patterns and 80 generations for 16×16 patterns.
For these preliminary experiments, these pattern
dimensions were estimated as common dimensions for
practical use. The measurement of success was the
average of the best fitness value for each generation over
all 25 trials as well as the average of the average
population fitness per generation. Finally, all of the
mutators were tested together under the same
conditions. The effectiveness of each group of mutators
was judged by its performance relative to the standard
mutation.

A similar set of trials to the above mutator tests were
run in which 25 different populations were evolved with
and without mutator limitations. However, instead of
stopping after a fixed number of generations, the system

Mutator Example

None 01101111
Classic 00101101
Rotate Right 1 10110111

Table 2. Examples of two mutation operators

 221

was configured to stop after the best fitness value
remained unchanged for ten generations. The total time
required to perform the 25 trials was recorded to
determine the difference between average time per trial
for trials with and without mutator limitations.

5. DISCUSSION

The limited/unlimited mutator trials revealed no
difference between limited and unlimited use of large and
medium impact mutators. In both sets of 25 trials, the
tenth consecutive unchanged population fitness value
was reached in the same amount of time with nearly the
same best fitness value for the final generations. One
explanation for the similar behavior between limited and
unlimited mutator populations is the relative simplicity of
the mutations on the test hardware. When tested on a
slower system, each generation takes minutes to evolve
instead of seconds. In such an environment, the limited
mutators would benefit from performing fewer complex
computations. Another explanation for the similar
behavior is that each population adapts to
disadvantageous mutations to good individuals by
keeping enough similar individuals in the population to
allow the destruction of one by improper mutation.

For the smaller 16×8 patterns, the Invert-All, Rotate-
All, Rotate-One, and Reverse-All mutators performed
better paired with the Classic mutator than the
standalone Classic mutator. The trials using all mutators
also outperformed the Classic mutator. However, all
mutators used together did not perform better than

Invert-All, Rotate-All, and Rotate-One mutators paired
with the Classic mutator. This suggests that certain
mutators detract from overall performance.

For the larger 16×16 patterns, both Invert mutator
variants and the Rotate-One-N mutator outperformed
the Classic mutator. In these trials the combination of all
mutators performed worse than the Classic mutator.
Interestingly, the best mutator for 16×16 patterns
(Rotate-One-N) was the worst mutator for 16×8
patterns. The Invert-All mutator was the only
meaningful mutator to consistently improve fitness for
both pattern sizes.

The results of the 16×8 and 16×16 trials (Tables 4
and 5) show little consistency between successful
mutator combinations for the different pattern sizes. The
worst mutator for the 16×8 patterns, Rotate-One-N, is
the best mutator for the 16×16 patterns. Similarly, the
single-row invert mutator performs poorly on 16×8
patterns while besting the Classic mutator on 16×16
patterns. An obvious solution to this drastic difference
in mutator performance for different pattern sizes is to
use all mutators and let the GA adapt to pattern size
accordingly. Unfortunately, the trials using all mutators
on 16×16 patterns reveal no improvement over the
Classic mutator by itself. A lack universal improvement
regardless of pattern size cannot justify the
computational complexity of the non-Classic mutators.
An approach for future work would be to experiment
with different combinations of the most successful
mutators for both pattern sizes to see if any combinations
would perform better than all mutators together.

Figure 3. Mutator comparison on 16×8 patterns

Mutator Best Avg. Bests
Classic

Invert-All 8.20 8.36 Y
Rotate-All 7.97 8.44 Y
Rotate-One 8.63 9.03 Y
All mutators 8.70 9.3 Y
Reverse-All 9.59 9.67 Y
Timbre-Exchange 9.96 10.04 -
Classic 9.87 10.04 -
Reverse-One 9.82 10.34 N
Invert-One 10.01 10.37 N
Rotate-One-N 9.92 10.98 N

Table 4. Fitness values for last generation of 16×8
patterns sorted by average population fitness

Figure 4. Mutator comparison on 16×16 patterns

Mutator Best Avg. Bests
Classic

Rotate-One-N 14.27 15.85 Y
Invert-All 18.04 18.28 Y
Invert-One 18.04 18.36 Y
Classic 19.63 19.96 -
Rotate-One 18.97 20.24 N
Timbre-Exchange 19.98 20.27 N
All mutators 17.99 20.32 N
Reverse-One 21.02 22.11 N
Reverse-All 22.11 22.35 N
Rotate-All 22.99 23.34 N

Table 5. Fitness values for last generation of 16×16
patterns sorted by average population fitness

 222

The addition of domain knowledge to genetic
operators in the form of rules should cause the GA to
search a more constrained solution space. Thus, the GA
with domain knowledge is not expected to find solutions
that the standard GA cannot also find, but it could be
expected to find those same solutions in less time.
However, the more domain knowledge integrated into
the operators, the smaller the solution space becomes. If
domain rules are not prerequisites for evolution of a
valid phenotype, they could exclude original solutions
that might have otherwise evolved by chance.

6. CONCLUSION

We have tested the effects of four types of musically
meaningful mutation operators in the domain of rhythmic
music with eight mutator variants. The performance of
these operators has been compared to that of a standard
mutation operator to determine if the use of MMMOs is
associated with an improvement in overall population
fitness.

Each of the eight mutation operator variants was
paired with the Classic mutator and populations were
evolved in 25 independent trials for 16×8 and 16×16
patterns. An additional set of 25 trials using all
meaningful mutator variants and the Classic mutator was
run for both pattern sizes.

Based on the results from trials for both sizes, the best
combination of mutators includes all of the Invert and
Rotate mutator variants. The Reverse mutators do not
lead to a significant improvement in smaller patterns and
they perform worse than the Classic mutator for larger
patterns. This latter case is most likely due to the effects
of the limited mutations rules. For larger patterns the
initial fitness values will be much higher than those of the
smaller patterns. Thus, the large impact mutators are
used in the evolution of larger patterns for at least 5
more generations than in the evolution of small patterns.
The longer these poorer mutators are allowed to run, the
greater their effect on overall fitness.

Despite the improvement achieved by some MMMOs
over the standard operators, the best improvements do
not lead to drastically better solutions than the standard
mutation operators within the scope of the current
experiments. The Rotate-One-N mutator improves on
the Classic mutator by 20% for 16×16 patterns. The
next best improvement by the Invert-All mutator is only
8%. Correspondingly for the 16×8 patterns, the best and
next best improvements over the standard classic
mutation are 17% and 16% with Invert-All and Rotate-
All respectively.

These improvements, while insignificant in the context
of this research, could lead to drastically better solutions
for more difficult problems. There is not solid evidence
to support a claim that improvements due to MMMOs
scale linearly with an increase in pattern size. Future
research in this area will need to explore the scaling of
improvements due to meaningful operators in a more
complex search domain to determine if the results
presented here are truly universal.

Future work will include the implementation of more
fitness functions, replacement of Bézier curves with

NURBs, and a redefinition of fitness calculation in terms
of Pareto-optimal comparisons.

7. REFERENCES

[1] Biles, John A. “GenJam: A Genetic Algorithm
for Generating Jazz Solos”. Available:
http://www.it.rit.edu/~jab/GenJam94/Paper.htm
l, 1994.

[2] Birchfield, David. “Generative Model for the
Creation of Musical Emotion, Meaning, and
Form”, Proceedings of the 2003 ACM SIGMM
workshop on Experiential telepresence, 2003,
99-104.

[3] Dostál, Martin. “Genetic Algorithms as a Model
of Musical Creativity - On Generating of a
Human-like Rhythmic Accompaniment”.
Computing and Informatics 22, 2005, 1001-
1020.

[4] Goldberg, David E. Genetic Algorithms in
Search, Optimization, and Machine Learning.
Reading: Addison-Wesley, 1989.

[5] Horowitz, Damon. “Generating Rhythms with
Genetic Algorithms”, Proceedings of the 1994
International Computer Music Conference.
Aarhus, Denmark: International Computer
Music Association, 1994.

[6] Papadopoulos, G and Wiggins, G. “A Genetic
Algorithm for the Generation of Jazz
Melodies.” Proceedings of STeP 98, Jyväskylä,
Finland, 1998.

[7] Tokui, N. and Iba, H. “Music Composition with
Interactive Evolutionary Computation”. Third
International Conference on Generative Art,
2000.

 223

