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ABSTRACT 

Music Behaviors are introduced as a way to conceptu-
ally organize computation for music generation. In this 
abstraction, music is organized hierarchically by com-
bining substructures either in sequence or parallel. 
While such structures are not new to either computer 
music or computer science, an efficient and simple real-
time implementation that does not require multiple 
threads or translation to data structures is offered, 
making this abstraction more appropriate in a variety of 
languages and systems where efficiency is a concern or 
where existing support is lacking. 

1. INTRODUCTION 

Computer music presents interesting programming 
challenges. Unlike traditional programming tasks, where 
the goal is to compute an answer or a response quickly 
and efficiently, music demands output with specific and 
often sophisticated timing, including potentially many 
parallel and synchronized streams of information.  

These particular requirements have led to innovation 
in programming languages and systems for music. Just a 
few examples are MUSIC N [9], FORMES [12], 
FORMULA [1], Nyquist [4], Siren [10], MAX [11], 
SuperCollider [8], and JMSL [7]. Aside from enabling 
interesting music applications, music languages un-
doubtedly affect the music they are intended to express. 
Music programs are often used as sketches and experi-
ments to explore ideas, with no specific end result in 
mind. It is important, therefore, to offer languages that 
can express musical ideas directly and conveniently. 

In this short paper, I discuss one style or design pat-
tern that has been found useful for algorithmic music 
generation. The approach, called Music Behaviors, has 
been found to greatly simplify some practical program-
ming problems, making it easy to express and modify 
music computation. Music Behaviors enable the pro-
grammer to describe musical “events” (really, any be-
havior that extends over time, such as a note, a sound 
object, silence, or a sound clip) and to combine events 
through sequential and parallel composition. 

One danger in presenting work of this kind is that the 
reader’s first response is likely to be “but I could solve 
problem X in system Y by doing Z.” Almost any pro-
gramming problem can be solved many ways, so the 
question is not so much “is it possible to express X in Y,” 
but rather “how directly and naturally can I express X in 
system Y?” Evaluations of this kind are subjective, but 
nevertheless useful. 

Music Behaviors are very similar to Composables in 
JMSL [7]. This paper extends that work by (1) providing 
an implementation without threads, (2) suggesting new 
termporal constructs, (3) presenting Music Behaviors as 
a generally applicable approach not tied to a specific 
language or system, and (4) showing that the syntactical 
hierarchy can mirror the musical hierarchy, improving 
the notation. The present work also introduces some 
terminology and concepts that may help to clarify the 
design space of language support for expressing and 
organizing temporal behavior. 

2. DEFINING THE PROBLEM 

The notion of sequential and parallel composition has 
been around many years. Aside from generic program-
ming constructs like “split” and “join” for parallelism, 
sequential execution is seen in almost all programming 
languages. There are music-specific languages such as 
LOCO [6] and Canon [3] that directly support sequential 
and parallel composition. There are some subtle details 
and distinctions to be made, however. First, there is the 
question of whether durations are internal or external to 
the sequenced objects. Second, there is the question of 
whether the sequenced objects are computed on-line or 
off-line. These distinctions are important factors in 
determining exactly what can be expressed. 

2.1. On-Line vs. Off-Line Representations 

In many systems, music is represented as a data struc-
ture. For example, Buxton’s SSSP [2] introduced a 
hierarchical data structure that supported notions of se-
quential and parallel composition. With data, one can 
look ahead to find and schedule future events. For ex-
ample, to play a structured composition with sequential 
and parallel sub-structures, one can simply traverse the 
data, enumerating all events and their times, and build a 
“flat” schedule of events to perform sequentially. Since 
the data is available ahead of the music performance, we 
call this an off-line representation. 

Computational, or program representations produce 
behaviors as a side-effect of program evaluation. In gen-
eral, one cannot enumerate all the events and their times 
because that would require the program to be executed in 
advance of playback. Systems like FORMULA [1] that 
compute music events and controls in time order (and 
usually in real time) are on-line representations. 
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2.2. Internal vs. External Duration 

The distinction between internal and external durations 
is best illustrated with an example. Suppose you have a 
sequence of events [A, B, C] to perform. The simplest 
way to do this is just to write a sequential program: 
 A; B; C; 
but in single-threaded systems, this will prevent the pro-
gram from doing anything else until the sequence com-
pletes. The standard solution is to schedule behaviors 
like [A, B, C] as a set of distinct events that execute 
quickly and return control to the scheduler. In this way, 
the events of many concurrent tasks can be interleaved. 
So, we need to schedule [A, B, C] as a sequence. If we 
know the durations of these events, we can compute 
when they finish and write something like: 
 schedule A at now 
 schedule B at now+dur(A) 
 schedule C at now+dur(A)+dur(B) 
This is the external duration case. Either we have some 
way to determine the duration by querying an object or 
reading a data structure, or we can specify a desired 
duration to each member of the sequence 

The other case is internal duration. Suppose we do 
not know the durations of A, B, and C. This not a prob-
lem for the sequential execution case: by definition, 
sequential execution will evaluate B when A finishes and 
evaluate C when B finishes. But how do we implement 
this with a scheduler? One way to do this is to modify A 
and B to invoke the next element of the sequence based 
on an internally derived duration. Using this approach, 
the implementation of A becomes: 

 def A(): 
     var dur = compute_duration_of_A 
     actions_that_implement_A 
     schedule B at now+dur 

But notice that this solution requires an internal modifi-
cation to all but the last elements of the sequence. This 
makes the program hard to read and modify, and A can-
not be performed without starting the sequence ABC.  

2.3. The Problem Statement 

We want to support real-time music programming with 
a “natural” programming style that makes programs 
easy to specify, read, and modify. The specific problem 
is to support hierarchical sequential and parallel struc-
tures represented by computation and with internal 
duration determination. 

For example, it would be nice if we could write pro-
grams that look something like this: 

par( seq( A, B, A ), 
        seqrep(10, C) ) 

which says to play A, B, A in sequence, starting at the 
same time (“par”-allel) as 10 repetitions of C. The details 
of A, B, and C are specified elsewhere (this is a feature), 
and might contain additional structure. 

One solution to this problem is to use threads for par-
allel composition. Using parbegin and parend to denote 
the creation of threads to evaluate statements in parallel, 
one might write the following: 

parbegin 
    begin A(); B(); A(); end 
    for i= 0 to 10 begin C() end 
parend 

This is a perfectly good solution except that it requires 
the creation of threads. Threads typically require more 
space and computational overhead than procedure calls 
or even scheduled events, and threads can make pro-
grams more difficult to understand because of unantici-
pated interactions between threads. FORMULA [1] and 
ChucK [13] are examples that use threads to express 
parallelism and implement clocks and scheduling care-
fully to support precisely coordinated timing. 

Another solution is based on either polling or some 
kind of notification mechanism. The general idea is that 
sequential behaviors include a “supervisor” that monitors 
the progress of the sequence and starts the next item 
when the precursor completes. The problem here is that 
the programmer must add some explicit signaling so that 
the supervisor can know when each item of the sequence 
completes. To avoid blocking other computation while 
waiting for items to finish, the supervisor reschedules 
itself periodically and polls for progress. This generates 
extra work and also quantizes timing to the time steps at 
which poling takes place. 

3. BEHAVIOR IMPLEMENTATION 

The solution I propose eliminates thread creation and 
polling, and provides ready-made sequential and parallel 
behaviors in the form of classes. Instances of these 
classes (objects) provide a place to keep track of state 
and progress so that multiple instances of behaviors do 
not interfere with one another. The solution uses explicit 
notifications to eliminate polling. Finally, behaviors can 
be accurately timed, performing exactly as intended, 
limited only by floating point resolution. Behaviors are 
inherently composable, simplifying the expression of 
complex parallel and sequential timed execution. 
Abstractly, a Behavior is a set of computations with a 
starting time and an internally determined duration. The 
duration need not be known until the moment that the 
behavior ends.  

A Python- or Serpent-like [5] pseudo language is used 
for examples that follow. Note that: Nested program 
structure is indicated by indentation, procedures defined 
(using “def”) within a class definition become methods 
of the class, an instance of the class Myclass is created 
by the expression Myclass(), and the new instance is 
initialized automatically by a call to the init() method. 

In this approach, the heart of every program is a single 
thread that runs periodically (e.g. every 1 ms) to check if 
a previously scheduled event (a call to a method) should 
be run or if input needs to be handled. All events are 
assumed to run quickly and return to the scheduler. 
Interleaving these short computations within one thread 
simulates parallelism. 

As can be seen below, the Behavior class provides a 
very simple interface: a Behavior is started by calling 
run (normally the parent does this). When the Behavior 
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ends, it should call its own done method. When a child 
finishes, next is called. While running, a behavior can 
call tlocal to read elapsed real time. Subclasses of 
Behavior typically override run and next: 

 class Behavior: 
     // this is a comment; here are instance vars: 
     var parent // another Behavior or nil 
     var tstart // start time 
     // call run method to start this behavior 
     def run() 
         tstart = get_time() 
         next() // subclasses override next 
     // call done method at end of behavior 
     def done() 
         if parent: parent.next() 
     // next method is called when child is done 
     def next() 
         return nil // default is do nothing, return nil 
     // get the elapsed real time 
     def tlocal() 
         return get_time() - tstart 
The get_time function returns the current logical time 

from the scheduler, i.e. the time at which, ideally, this 
computation should take place. This is normally just the 
real time at which a computation is scheduled to run, 
ignoring any latency or computation time. By working 
with idealized time, computation time and system 
latency do not accumulate to create long-term scheduling 
errors, and multiple behaviors can easily synchronize. 

Here is an implementation sketch of Note, which 
selects a pitch and duration and plays the note. Since the 
details of sound generation by MIDI or direct synthesis 
are unimportant here, they are omitted: 

 // Note is a subclass of Behavior: 
 class Note (Behavior): 
     def run() 
         var pitch = compute_a_suitable_pitch 
         var dur = compute_a_suitable_duration 
         of_course_other_parameters_are_possible 
         synthesize_note(pitch, dur, other_params) 
         // cause uses scheduler to send a message 

        // (‘done’) to this object after dur secs: 
         cause(dur, ‘done’) 
Now, we can write a complex behavior such as our 
earlier example. In this language, square brackets are 
array constructors, e.g. “[1, 2, 3]” denotes an array. 
 score = Par([ Seq([ Note(), Note(), Note() ]), 
                      Seqrep(10, Note()) ]) 
 score.run() 
In practice, it would be odd to make so many copies of 
Note. Instead, either Note would take initialization 
parameters so that each copy could be different, or dif-
ferent behaviors, e.g. A, B, and C, would be used in 
place of Note. 

The following is an implementation of Seq, which 
runs each child in sequence. A counter, i, is used to 
remember which element of the children array to run 
next. When next is called as a consequence of the child 
calling done, i is incremented and the next child is 
started. When the last child completes, the Seq is done. 
Seq inherits from Behavior, but most of the methods are 
overridden: 

class Seq (Behavior): 
    var i, children // instance variables 

    def init(c) 
        children = c // copy to instance var 
    def run() // run starts this behavior 
        i = -1 // this will be updated by next 
        super.run() // invoke superclass’s run method 
    def next() 
        i = i + 1 
        if i < len(children) 
            // set child’s parent to this Seq object: 
            children[i].parent = this 
            children[i].run() // start the ith child 
        else // no more children, so sequence is done 
            done() // inform parent we’re done 

The following is an implementation of Seqrep, which 
is similar to Seq, but repeats a child behavior n times: 

class Seqrep (Behavior): 
    var i, n, child 
    def init(reps, c) // repeat child behavior c 
         n = reps 
        child = c 
        child.parent = this // this object is c’s parent 
    def run() 
        i = -1 // this will be updated by next 
        super.run() // invoke superclass’s run method 
    def next() 
        i = i + 1 
        if i < n 
            child.run() // start child again 
        else 
            done() // inform parent we’re done 

Similarly, the Par class runs children in parallel, fin-
ishing when the last child is done: 

 class Par (Behavior): 
     var children, count 
     def init(c) 
         children = c 
     def run() 
         tstart = get_time() 
         count = 0 
         for c in children // start them all at once 
  c.parent = this 
  c.run() 
     def next() // called as each child finishes 
         count = count + 1 
         if count = len(children) 
             done() 
To implement Parrep, which invokes n copies of a 

child, we need some way to get copies of objects rather 
than reusing the same object (as in Seqrep). In a dynami-
cally typed language like this, we can allow the child to 
be specified several ways: If the child is a function, the 
function is called to create an object that is the child to 
run. If the child names a subclass of Behavior, instances 
of the subclass are created and run. 

4. DISCUSSION AND EXAMPLE 

The Behavior class and associated subclasses offer a 
simple but powerful way to compose temporal behav-
iors into complex musical structures, especially when 
the music generation is described computationally. This 
approach has several advantages: 

• It is simple and direct to write nested structures 
of sequential and parallel activities. 
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• The resulting programs are efficient: They do 
not require the creation of threads, the alloca-
tion of many objects, or polling. 

• By representing the music computationally, 
sounds and even musical structure can respond 
to real-time events, in contrast to event lists. 

• New control constructs can be created easily, 
such as “repeat A until time T,” “run A after 
delay D1 and followed by delay D2,” or 
“repeat A until predicate P is true.” 

Below, we offer a slightly more realistic example to 
illustrate this approach. Here, melodic lines are gener-
ated by making sequences of phrases, where each phrase 
is a sequence of short notes followed by a long one. The 
note is described below. 

class Nt (Behavior): 
    var p // pitch as MIDI key number (60 = C4) 
    def run() 
        // select random interval in range -9 to -4 
        p = p + irandom(6) – 9 
        if p < 36: p = p + 12 
        var dur = 0.2 // seconds 
        if parent.i == parent.n – 1 // last in phrase 
            dur = 5 * dur 
        play_note(dur, pitch) 
        cause(dur, ‘done’) 

The Phrase class plays a sequence of Nt notes: 
class Phrase (Seqrep): 
    def init() 
        super.init(0, Nt()) // rep count computed later 
    def run() 
        // select random starting pitch from 36 to 59 
        child.p = 36 + irandom(24) 
        // select number of repetitions 
        n = 1 + irandom(4) // from 1 to 4 
        super.run() 

And finally, we generate a sequence of Phrases using 
Seqrep: 

melody = Seqrep(10, Phrase()) 
melody.run() 

In most of these examples, objects are reused. For 
example, the Phrase class is run 10 times, and each 
Phrase creates one instance of Nt, which is run a random 
number of times. In some cases, this is a “feature,” e.g. 
Nt computes each pitch by adding an interval to the pre-
vious pitch saved in an instance variable. However, in 
other cases, code will be simpler and more readable if 
new instances are created for each use. The details, effi-
ciency, and desirability of creating instances are lan-
guage-dependent, but should certainly be considered. 

5. CONCLUSION 

Music Behaviors are a conceptually simple but powerful 
way to organize and express temporal music structure 
and schemes for music generation. While any given 
program or music specification can be implemented in 
many ways using many different abstractions, the con-
ceptual organization of programs is an important part of 
the compositional process. Music Behaviors abstract 
activities that take place over intervals of time. These 
behaviors can be composed sequentially and in parallel 

using lists or iteration. The implementation is such that 
nested expressions directly convey the nested structure 
of behaviors, making them easy to write and modify. 
While nested sequential and parallel structures are 
hardly new, the Music Behaviors approach facilitates 
their use by offering an efficient, simple implementation 
that does not require thread creation, polling, or 
translation to data structures. 
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