

ABSTRACT BEHAVIORS FOR STRUCTURED MUSIC
PROGRAMMING

 Roger B. Dannenberg
 Carnegie Mellon University

School of Computer Science

ABSTRACT

Music Behaviors are introduced as a way to conceptu-
ally organize computation for music generation. In this
abstraction, music is organized hierarchically by com-
bining substructures either in sequence or parallel.
While such structures are not new to either computer
music or computer science, an efficient and simple real-
time implementation that does not require multiple
threads or translation to data structures is offered,
making this abstraction more appropriate in a variety of
languages and systems where efficiency is a concern or
where existing support is lacking.

1. INTRODUCTION

Computer music presents interesting programming
challenges. Unlike traditional programming tasks, where
the goal is to compute an answer or a response quickly
and efficiently, music demands output with specific and
often sophisticated timing, including potentially many
parallel and synchronized streams of information.

These particular requirements have led to innovation
in programming languages and systems for music. Just a
few examples are MUSIC N [9], FORMES [12],
FORMULA [1], Nyquist [4], Siren [10], MAX [11],
SuperCollider [8], and JMSL [7]. Aside from enabling
interesting music applications, music languages un-
doubtedly affect the music they are intended to express.
Music programs are often used as sketches and experi-
ments to explore ideas, with no specific end result in
mind. It is important, therefore, to offer languages that
can express musical ideas directly and conveniently.

In this short paper, I discuss one style or design pat-
tern that has been found useful for algorithmic music
generation. The approach, called Music Behaviors, has
been found to greatly simplify some practical program-
ming problems, making it easy to express and modify
music computation. Music Behaviors enable the pro-
grammer to describe musical “events” (really, any be-
havior that extends over time, such as a note, a sound
object, silence, or a sound clip) and to combine events
through sequential and parallel composition.

One danger in presenting work of this kind is that the
reader’s first response is likely to be “but I could solve
problem X in system Y by doing Z.” Almost any pro-
gramming problem can be solved many ways, so the
question is not so much “is it possible to express X in Y,”
but rather “how directly and naturally can I express X in
system Y?” Evaluations of this kind are subjective, but
nevertheless useful.

Music Behaviors are very similar to Composables in
JMSL [7]. This paper extends that work by (1) providing
an implementation without threads, (2) suggesting new
termporal constructs, (3) presenting Music Behaviors as
a generally applicable approach not tied to a specific
language or system, and (4) showing that the syntactical
hierarchy can mirror the musical hierarchy, improving
the notation. The present work also introduces some
terminology and concepts that may help to clarify the
design space of language support for expressing and
organizing temporal behavior.

2. DEFINING THE PROBLEM

The notion of sequential and parallel composition has
been around many years. Aside from generic program-
ming constructs like “split” and “join” for parallelism,
sequential execution is seen in almost all programming
languages. There are music-specific languages such as
LOCO [6] and Canon [3] that directly support sequential
and parallel composition. There are some subtle details
and distinctions to be made, however. First, there is the
question of whether durations are internal or external to
the sequenced objects. Second, there is the question of
whether the sequenced objects are computed on-line or
off-line. These distinctions are important factors in
determining exactly what can be expressed.

2.1. On-Line vs. Off-Line Representations

In many systems, music is represented as a data struc-
ture. For example, Buxton’s SSSP [2] introduced a
hierarchical data structure that supported notions of se-
quential and parallel composition. With data, one can
look ahead to find and schedule future events. For ex-
ample, to play a structured composition with sequential
and parallel sub-structures, one can simply traverse the
data, enumerating all events and their times, and build a
“flat” schedule of events to perform sequentially. Since
the data is available ahead of the music performance, we
call this an off-line representation.

Computational, or program representations produce
behaviors as a side-effect of program evaluation. In gen-
eral, one cannot enumerate all the events and their times
because that would require the program to be executed in
advance of playback. Systems like FORMULA [1] that
compute music events and controls in time order (and
usually in real time) are on-line representations.

 31

2.2. Internal vs. External Duration

The distinction between internal and external durations
is best illustrated with an example. Suppose you have a
sequence of events [A, B, C] to perform. The simplest
way to do this is just to write a sequential program:
 A; B; C;
but in single-threaded systems, this will prevent the pro-
gram from doing anything else until the sequence com-
pletes. The standard solution is to schedule behaviors
like [A, B, C] as a set of distinct events that execute
quickly and return control to the scheduler. In this way,
the events of many concurrent tasks can be interleaved.
So, we need to schedule [A, B, C] as a sequence. If we
know the durations of these events, we can compute
when they finish and write something like:
 schedule A at now
 schedule B at now+dur(A)
 schedule C at now+dur(A)+dur(B)
This is the external duration case. Either we have some
way to determine the duration by querying an object or
reading a data structure, or we can specify a desired
duration to each member of the sequence

The other case is internal duration. Suppose we do
not know the durations of A, B, and C. This not a prob-
lem for the sequential execution case: by definition,
sequential execution will evaluate B when A finishes and
evaluate C when B finishes. But how do we implement
this with a scheduler? One way to do this is to modify A
and B to invoke the next element of the sequence based
on an internally derived duration. Using this approach,
the implementation of A becomes:

 def A():
 var dur = compute_duration_of_A
 actions_that_implement_A
 schedule B at now+dur

But notice that this solution requires an internal modifi-
cation to all but the last elements of the sequence. This
makes the program hard to read and modify, and A can-
not be performed without starting the sequence ABC.

2.3. The Problem Statement

We want to support real-time music programming with
a “natural” programming style that makes programs
easy to specify, read, and modify. The specific problem
is to support hierarchical sequential and parallel struc-
tures represented by computation and with internal
duration determination.

For example, it would be nice if we could write pro-
grams that look something like this:

par(seq(A, B, A),
 seqrep(10, C))

which says to play A, B, A in sequence, starting at the
same time (“par”-allel) as 10 repetitions of C. The details
of A, B, and C are specified elsewhere (this is a feature),
and might contain additional structure.

One solution to this problem is to use threads for par-
allel composition. Using parbegin and parend to denote
the creation of threads to evaluate statements in parallel,
one might write the following:

parbegin
 begin A(); B(); A(); end
 for i= 0 to 10 begin C() end
parend

This is a perfectly good solution except that it requires
the creation of threads. Threads typically require more
space and computational overhead than procedure calls
or even scheduled events, and threads can make pro-
grams more difficult to understand because of unantici-
pated interactions between threads. FORMULA [1] and
ChucK [13] are examples that use threads to express
parallelism and implement clocks and scheduling care-
fully to support precisely coordinated timing.

Another solution is based on either polling or some
kind of notification mechanism. The general idea is that
sequential behaviors include a “supervisor” that monitors
the progress of the sequence and starts the next item
when the precursor completes. The problem here is that
the programmer must add some explicit signaling so that
the supervisor can know when each item of the sequence
completes. To avoid blocking other computation while
waiting for items to finish, the supervisor reschedules
itself periodically and polls for progress. This generates
extra work and also quantizes timing to the time steps at
which poling takes place.

3. BEHAVIOR IMPLEMENTATION

The solution I propose eliminates thread creation and
polling, and provides ready-made sequential and parallel
behaviors in the form of classes. Instances of these
classes (objects) provide a place to keep track of state
and progress so that multiple instances of behaviors do
not interfere with one another. The solution uses explicit
notifications to eliminate polling. Finally, behaviors can
be accurately timed, performing exactly as intended,
limited only by floating point resolution. Behaviors are
inherently composable, simplifying the expression of
complex parallel and sequential timed execution.
Abstractly, a Behavior is a set of computations with a
starting time and an internally determined duration. The
duration need not be known until the moment that the
behavior ends.

A Python- or Serpent-like [5] pseudo language is used
for examples that follow. Note that: Nested program
structure is indicated by indentation, procedures defined
(using “def”) within a class definition become methods
of the class, an instance of the class Myclass is created
by the expression Myclass(), and the new instance is
initialized automatically by a call to the init() method.

In this approach, the heart of every program is a single
thread that runs periodically (e.g. every 1 ms) to check if
a previously scheduled event (a call to a method) should
be run or if input needs to be handled. All events are
assumed to run quickly and return to the scheduler.
Interleaving these short computations within one thread
simulates parallelism.

As can be seen below, the Behavior class provides a
very simple interface: a Behavior is started by calling
run (normally the parent does this). When the Behavior

 32

ends, it should call its own done method. When a child
finishes, next is called. While running, a behavior can
call tlocal to read elapsed real time. Subclasses of
Behavior typically override run and next:

 class Behavior:
 // this is a comment; here are instance vars:
 var parent // another Behavior or nil
 var tstart // start time
 // call run method to start this behavior
 def run()
 tstart = get_time()
 next() // subclasses override next
 // call done method at end of behavior
 def done()
 if parent: parent.next()
 // next method is called when child is done
 def next()
 return nil // default is do nothing, return nil
 // get the elapsed real time
 def tlocal()
 return get_time() - tstart
The get_time function returns the current logical time

from the scheduler, i.e. the time at which, ideally, this
computation should take place. This is normally just the
real time at which a computation is scheduled to run,
ignoring any latency or computation time. By working
with idealized time, computation time and system
latency do not accumulate to create long-term scheduling
errors, and multiple behaviors can easily synchronize.

Here is an implementation sketch of Note, which
selects a pitch and duration and plays the note. Since the
details of sound generation by MIDI or direct synthesis
are unimportant here, they are omitted:

 // Note is a subclass of Behavior:
 class Note (Behavior):
 def run()
 var pitch = compute_a_suitable_pitch
 var dur = compute_a_suitable_duration
 of_course_other_parameters_are_possible
 synthesize_note(pitch, dur, other_params)
 // cause uses scheduler to send a message

 // (‘done’) to this object after dur secs:
 cause(dur, ‘done’)
Now, we can write a complex behavior such as our
earlier example. In this language, square brackets are
array constructors, e.g. “[1, 2, 3]” denotes an array.
 score = Par([Seq([Note(), Note(), Note()]),
 Seqrep(10, Note())])
 score.run()
In practice, it would be odd to make so many copies of
Note. Instead, either Note would take initialization
parameters so that each copy could be different, or dif-
ferent behaviors, e.g. A, B, and C, would be used in
place of Note.

The following is an implementation of Seq, which
runs each child in sequence. A counter, i, is used to
remember which element of the children array to run
next. When next is called as a consequence of the child
calling done, i is incremented and the next child is
started. When the last child completes, the Seq is done.
Seq inherits from Behavior, but most of the methods are
overridden:

class Seq (Behavior):
 var i, children // instance variables

 def init(c)
 children = c // copy to instance var
 def run() // run starts this behavior
 i = -1 // this will be updated by next
 super.run() // invoke superclass’s run method
 def next()
 i = i + 1
 if i < len(children)
 // set child’s parent to this Seq object:
 children[i].parent = this
 children[i].run() // start the ith child
 else // no more children, so sequence is done
 done() // inform parent we’re done

The following is an implementation of Seqrep, which
is similar to Seq, but repeats a child behavior n times:

class Seqrep (Behavior):
 var i, n, child
 def init(reps, c) // repeat child behavior c
 n = reps
 child = c
 child.parent = this // this object is c’s parent
 def run()
 i = -1 // this will be updated by next
 super.run() // invoke superclass’s run method
 def next()
 i = i + 1
 if i < n
 child.run() // start child again
 else
 done() // inform parent we’re done

Similarly, the Par class runs children in parallel, fin-
ishing when the last child is done:

 class Par (Behavior):
 var children, count
 def init(c)
 children = c
 def run()
 tstart = get_time()
 count = 0
 for c in children // start them all at once
 c.parent = this
 c.run()
 def next() // called as each child finishes
 count = count + 1
 if count = len(children)
 done()
To implement Parrep, which invokes n copies of a

child, we need some way to get copies of objects rather
than reusing the same object (as in Seqrep). In a dynami-
cally typed language like this, we can allow the child to
be specified several ways: If the child is a function, the
function is called to create an object that is the child to
run. If the child names a subclass of Behavior, instances
of the subclass are created and run.

4. DISCUSSION AND EXAMPLE

The Behavior class and associated subclasses offer a
simple but powerful way to compose temporal behav-
iors into complex musical structures, especially when
the music generation is described computationally. This
approach has several advantages:

• It is simple and direct to write nested structures
of sequential and parallel activities.

 33

• The resulting programs are efficient: They do
not require the creation of threads, the alloca-
tion of many objects, or polling.

• By representing the music computationally,
sounds and even musical structure can respond
to real-time events, in contrast to event lists.

• New control constructs can be created easily,
such as “repeat A until time T,” “run A after
delay D1 and followed by delay D2,” or
“repeat A until predicate P is true.”

Below, we offer a slightly more realistic example to
illustrate this approach. Here, melodic lines are gener-
ated by making sequences of phrases, where each phrase
is a sequence of short notes followed by a long one. The
note is described below.

class Nt (Behavior):
 var p // pitch as MIDI key number (60 = C4)
 def run()
 // select random interval in range -9 to -4
 p = p + irandom(6) – 9
 if p < 36: p = p + 12
 var dur = 0.2 // seconds
 if parent.i == parent.n – 1 // last in phrase
 dur = 5 * dur
 play_note(dur, pitch)
 cause(dur, ‘done’)

The Phrase class plays a sequence of Nt notes:
class Phrase (Seqrep):
 def init()
 super.init(0, Nt()) // rep count computed later
 def run()
 // select random starting pitch from 36 to 59
 child.p = 36 + irandom(24)
 // select number of repetitions
 n = 1 + irandom(4) // from 1 to 4
 super.run()

And finally, we generate a sequence of Phrases using
Seqrep:

melody = Seqrep(10, Phrase())
melody.run()

In most of these examples, objects are reused. For
example, the Phrase class is run 10 times, and each
Phrase creates one instance of Nt, which is run a random
number of times. In some cases, this is a “feature,” e.g.
Nt computes each pitch by adding an interval to the pre-
vious pitch saved in an instance variable. However, in
other cases, code will be simpler and more readable if
new instances are created for each use. The details, effi-
ciency, and desirability of creating instances are lan-
guage-dependent, but should certainly be considered.

5. CONCLUSION

Music Behaviors are a conceptually simple but powerful
way to organize and express temporal music structure
and schemes for music generation. While any given
program or music specification can be implemented in
many ways using many different abstractions, the con-
ceptual organization of programs is an important part of
the compositional process. Music Behaviors abstract
activities that take place over intervals of time. These
behaviors can be composed sequentially and in parallel

using lists or iteration. The implementation is such that
nested expressions directly convey the nested structure
of behaviors, making them easy to write and modify.
While nested sequential and parallel structures are
hardly new, the Music Behaviors approach facilitates
their use by offering an efficient, simple implementation
that does not require thread creation, polling, or
translation to data structures.

 REFERENCES

[1] Anderson, D. and Kuivila, R. “A System for Computer
Music Performance.” ACM Transactions on Computer
Systems, 8(1) (Feb. 1990), pp. 56-82.

[2] Buxton, W., Sniderman, R., Reeves, W., Patel, S. &
Baecker, R. “The Evolution of the SSSP Score Editing
Tools.” In Roads & Strawn, Foundations of Computer
Music. MIT Press, Cambridge, (1985), pp. 376-402.

[3] Dannenberg, R. B. “The Canon Score Language.”
Computer Music Journal 13(1), (Spr 1989), pp. 47-56.

[4] Dannenberg, R. “Machine Tongues XIX: Nyquist, a
Language for Composition and Sound Synthesis,”
Computer Music Journal, 21(3) (Fall 1997), pp. 50-60.

[5] Dannenberg. “A Language for Interactive Audio
Applications,” in Proceedings of the 2002 Int.
Computer Music Conf. San Francisco: International
Computer Music Association, (2002), pp. 509-15.

[6] Desain, P., & Honing, H. “LOCO: a composition
microworld in Logo.” Computer Music Journal, 12(3),
(1988), pp. 30-42.

[7] Didkovsky, N. and Burk, P. “Java Music Specification
Language, An Introduction and Overview,” in
Proceedings from the 2001 International Computer
Music Conference. San Francisco: International
Computer Music Association, (2001), pp. 123-126.

[8] McCartney, J. “Rethinking the Computer Music
Programming Language: SuperCollider.” Computer
Music Journal, 26(4), (2002), pp. 61-68.

[9] Mathews, M., Miller, J., Moore, F. R., Pierce, J., and
Risset, J. C. The Technology of Computer Music.
Cambridge, Mass.: MIT Press, 1969.

[10] Pope, S. T. and Ramakrishnan, C. “Recent
Developments in Siren: Modeling, Control, and
Interaction for Large-scale Distributed Music
Software,” in Proc. of the 2003 ICMC. San Francisco:
International Computer Music Assoc., (2003), pp. 5-9.

[11] Puckette, M. “Combining Event and Signal Processing
in the MAX Graphical Programming Environment.”
Computer Music Journal, 15(3), (1991), pp. 68-77.

[12] Rodet, X., Cointe, P., “Formes: Compostion and
Scheduling of Processes,” Computer Music Journal 8
(3), (Fall 1984), pp. 32-50.

[13] Wang, G. and Cook, P. “ChucK: A Concurrent, On-
the-fly Audio Programming Language.” In
Proceedings of the International Computer Music
Conference, San Francisco: International Computer
Music Association, (2003), pp. 217-225.

 34

