Audio Latency Measurements of Desktop Operating Systems

Karl MacMillan, Michael Droettboom, Ichiro Fujinaga

Peabody Institute of the Johns Hopkins University
email: { karlmac,mdboom,ich} @peabody.jhu.edu

Abstract

The realtime manipulation of audio with desktop computers
has become both possible and popular over the last several
years. Perhaps the most important aspect that determines
the suitability of a computer operating system for this
application is the latency of its audio system. This paper
describes the results of an experiment measuring the audio
latency of several current desktop operating systems,
including Microsoft Windows, Apple MacOS, and Linux.

1 Introduction

With the dramatic increase in personal computer speed
over the last several years, the possibilities for the realtime
manipulation of audio have greatly expanded. Desktop
computers are now sufficiently powerful to perform
complex manipulations of audio in realtime. A responsive
realtime audio system requires more than raw processing
power, however; low audio latency is also necessary.
Previous experiments that examined the latency
performance of desktop operating systems revealed
inadequate performance for many tasks (Brandt and
Dannenberg 1998; Freed, Chaudhary, and Davila 1997). In
this paper, the results of a new experiment to assess the
status of low-latency audio manipulation with desktop
operating systems are described. First, the definition of
latency for the test is described. Then, the test method and
the computer systems used in the test is detailed. Finally, the
results of the experiment is presented.

2 Latency Definition

In the context of this paper, audio latency is defined as
the minimum time required for a computer to store a sample
from an audio interface into application memory and copy
that same sample from application memory to the audio
interface output. Both the conversions from analog to digital
and back to analog are included. This definition deliberately
includes the entire system in order to provide an indication
of the actual performance of a computer system in a studio
or stage setting. This means, however, that the results
presented in this paper may show higher |atencies than other
measurements. We have seen many figures stated for the

latency of various systems that reflect only sound output,
buffer settings, or otherwise do not take into consideration
the latency of the entire system. Though these are certainly
valid measurements of parts of the audio systems, we felt
that a measurement of the entire system would better show
the latencies that can be expected from normal usage.

For this experiment, several types of applications,
including some popular software samplers, are excluded.
Specifically, applications written to run in kernel modules,
separate realtime modules, or other non-standard methods
are not considered. Applications written in this manner often
sacrifice the benefits of running under general-purpose
operating systems including support for protected memory,
floating-point math, and standard soundcard drivers
(Barabanov 1997; Van Buskirk and Bibbo 1999).

3 Test Method

The latency measurements were performed using a
simple program that transferred samples to and from the
soundcard using operating system-specific programming
interfaces. In all tests, the audio was sampled at 44.1 kHz
sampling rate with 16 or 24 bits of precision depending on
the soundcard. The minimal latency was obtained through
manual testing of a variety of buffer settings to determine
the optimal settings for each system. The experimental setup
consisted of a sound source (CD) connected directly to one
channel of aDAT recorder and to the other channel through
the computer. An impulse was recorded on the DAT with
the left channel recording the direct sound and the right
channel recording the same signal sent through the
computer system. The latency was determined by counting
the number of samples between the onset of the impulses on
the left and right channels.

3.1 System Load

In addition to testing the systems with only the normal
user interface and the latency test program running, the best
performing system from each operating system family was
tested while running two additional programs to generate
unbounded CPU and disk load. The minimal latency was
again obtained by manually testing buffer settings, but with
the load generation programs running. These tests should
give a general estimate of the degradation of latency

performance that can be expected while performing other
complex tasks on the same computer, such as signal
processing and hard disk streaming.

4 Test System Details

41 Hardware

The hardware used to test the system was comprised of
recent model desktop and laptop computers. Several models
of PCs and Macintoshes were used in the hopes of providing
enough information to separate the hardware performance
from that of the operating system. Also, wherever possible,
the same hardware was used to test multiple operating
systems. Table 1 details the general hardware used and
Table 2 shows the details of the soundcards used.

low-latency enhancements were Andrew Morton’s “lowish-
latency” patches, available from (www.uow.edu.au/
~andrewm/linux/schedlat.html), and Ingo Molnar’s low-
latency patches (www.kernel.org/publ/linux/kernel/people/
mingo/lowlatency-patches/). Though not part of the official
Linux kernel, we thought it was important to test these
enhancements because low-latency enhanced kernels are
commonly added by users working with realtime audio and
the DeMuDi Linux distribution (www.demudi.org), which
is specifically targeted at multimedia users, includes them.

4.3 Programming Interfaces

One of the crucial aspects of obtaining the best latency
performance is choosing the best application programming
interface (API) for each operating system. Each of the
operating systems tested presents several choices to the
programmer. Table 3 lists common APIs and the platforms
for which they are available. The APIs that are marked as
standard are provided by default with the operating system.

API Platforms Standard
Microsoft DirectSound and Windows 98, ME, No
DirectSoundCapture 2000
Microsoft Multimedia Windows 98, ME, Yes
Extensions (MME) 2000
Steinberg Audio Stream Windows 98, ME, No
Input Output (ASIO) 2.0 2000, MacOS 8 and 9
Apple SoundManager (SM) MacOS 8, 9 Yes
Apple CoreAudio MacOS X Yes
Open Sound System (OSS) Linux 2.2, 2.4 Yes
Advanced Linux Sound .
Architecture (ALSA) Linux2.2,2.4 No

eed | Memor .
System CPU (Sl\ﬁHz) M B)y Disk | Soundcard
A Pl 933 256 SCSl 1
B G3 400 128 SCSl 2
C G4 400 128 IDE 2
D Pl 700 128 IDE 3
E Celeron 366 192 IDE 4
F P11 (dual) 933 512 SCSl 5
G G4 500 256 IDE 6
Table 1. Hardwar e Details of the Test Systems.
Soundcard Brand Model Grade
1 Crystal CH614 Consumer
2 Apple Built-in Consumer
3 ESS Maestro 3 Consumer
4 ESS Solo-1 Consumer
5 RME Hammerfall (9652) Professional
6 MOTU 2408 Professional

Table 2. Soundcard Details.

4.2 Operating Systems

In this experiment, eight separate operating systems
were tested in order to give a comprehensive picture of the
operatmg systemsin current use. These were:

Microsoft Windows 98
Microsoft Windows 2000
Microsoft Windows ME
Apple MacOS 8

Apple MacOS 9

Apple MacOS X

Linux 2.2

Linux 2.4

The Llnux systems all used RedHat 7.0 or RedHat 7.1.
All of the operating systems were updated with the latest
available patches.

With the Linux systems, several versions were tested in
addition to the standard RedHat configuration. The kernel,
which isthe core of the operating system, was replaced with
special versions designed to provide better latency. These

Table 3. Common Audio APIs.

In addition to those listed in Table 3, two other APIs
were used that are designed to simplify audio programming.
PortAudio (www.portaudio.com) provides a simplified API
that is portable to Windows, Macintosh, and Linux. By
providing a platform-neutral framework, PortAudio allows
programmers to create audio applications that are source-
code compatible on many systems. LAAGA (Linux Audio
Application Glue API), an experimental system designed
by Paul Davis (www.op.net/~pbd) allows the transparent
sharing of audio data between applications on Linux. The
system, which does not need to run in the kernel and uses
only standard Unix programming interfaces, was not
originally part of the experiments for this paper, but the
results were impressive enough to warrant inclusion.

5 Reaults

Table 4 summarizes the results of this experiment for
unloaded systems. The system labeled * Spirit’ refersto a
Spirit Digital 328 Mixer by Soundcraft, which was included
to provide a baseline comparison. The Linux systems are
labeled by kernel version. Only one test was done under
Linux using the OSS (Open Sound System)

(www.opensound.com/oss.html) because of alack of
reliable support for full duplex with the test system
hardware. Table 5 shows the results of the tests with system
load.

Operatin . Latenc
System g/stemg Details (ms) y
Spirit - - 181
A Linux 2.4.1 (AM) ALSA 2.72
A Linux 2.4.1 ALSA 2.72
F Windows 2000 ASIO 311
C MacOS X CoreAudio 397
F Linux 2.4.1 (IM) ALSA (L) 4.30
F Linux 2.4.5 (AM) ALSA (L) 4.30
F Linux 2.4.2 ALSA (L) 4.30
G MacOS 9.04 ASIO 6.80
A Linux 2.2.16 ALSA 7.19
F Windows 2000 MME (P) 11.45
E Linux 2.4.0 0SS 12.20
E Windows 98 MME (P) 60.86
E Windows 98 DirectSound (P) 63.24
D Windows ME MME (P) 7351
A Windows 2000 MME (P) 75.85
D Windows ME DirectSound (P) 82.86
B MacOS 8.6 SM (P) 106.24
A Windows 2000 DirectSound (P) 123.11
C MacOS 9.04 SM (P) VM Off 195.58
C MacOS 9.04 SM (P) VM On 935.53

Table 4. Latency Test resultsfor systemswithout load.
P —PortAudio. L —LAAGA. VM — MacOSvirtual memory
settings. AM —Andrew Morton. IM —Ingo Molnar.

System | Operating System | Details L atency (ms)
C MacOS X CoreAudio 3.97
F Linux 2.4.1 (IM) ALSA (L) 4.30
F Linux 2.4.5(AM) | ALSA (L) 4.30
F Linux 2.4.2 ALSA (L) 4.30
F Windows 2000 ASIO 6.03
G MacOS 9.04 ASIO 6.80
F Windows 2000 MME (P) 245.17

Table5—Latency Test Resultswith system load.
P —PortAudio. L —LAAGA.
AM —Andrew Morton. IM —Ingo Molnar.

5.1 Linux

The Linux systems had the best performance on the tests
without load and the second best performance with load.
Furthermore, the Linux systems tended to have the least
difference between best-case and worst-case performance.
Excluding the test that used the less efficient OSS API,
which is slated for replacement by ALSA (Advanced Linux
Sound Architecture) (www.alsa-project.org) in the next
kernel version, all of the Linux tests had latencies below 10
milliseconds. Finally, the performance of the Linux systems
are independent of the quality and expense of the
soundcards.

The tests using the kernels with low-latency
enhancements did not show significantly better performance
than the standard kernels. Thisis most likely due to the test
hardware used and the simplicity of the load generation
programs. The low-latency patches address issues only with
specific kernel sub-systems rather than providing a general
enhancement to the latency characteristics of the system. It
is likely that the load generation programs used did not
exercise the improved sub-systems. Additionally, in our
experience, most of the latency problems in Linux are
related to IDE disks, which none of the systems tested with
load used. Performing other tasks with the systems while
running the latency test program, such as CPU intensive
graphics programs and compiling large projects, showed
that some disk-intensive tasks can cause problems with the
standard kernel. No amount of CPU load alone created
latency problems, however.

One interesting aspect of these results is the excellent
latency performance using LAAGA. The only other results
that were less than 10 milliseconds were ASIO (Audio
Streaming Input Output) (Steinberg 1999) on Windows and
Macintosh, neither of which allow more than one
application access to the sound hardware concurrently as
LAAGA allows. LAAGA showed excellent performance
that did not noticeably degrade with multiple test
applications accessing the sound hardware concurrently.

5.2 Microsoft Windows

The Windows systems tested had results ranging from
excellent to poor in correlation with the quality of the
soundcard being tested. All of the tests using the RME
Hammerfall card without system load performed well, but
all of the tests with consumer-quality soundcards had
latencies above 60 milliseconds. For the tests with system
load, only the ASIO drivers performed well. The test
program using the MME (Multimedia Extensions) (Petzold
1998) driver performed poorly with load. Preliminary tests
showed that this was caused more by CPU load than disk
load.

53 AppleMacOS8and9

Like the Windows systems, the classic MacOS systems
had both excellent and poor performance, again correlated
with soundcard quality. The performance with ASIO, which
was tested using Max/M SP, was excellent in both the loaded
and unloaded tests. One surprising result was the latency
test using MacOS 9.04 with virtual memory enabled, which
yielded latencies of nearly 1 second.

54 AppleMacOSX

Apple MacOS X was the second best performing system
on the tests without load and the best performing system on
the tests with load. The new CoreAudio API, which was
introduced with MacOS X (Apple 2001), is clearly designed

for low-latency performance. In addition, CoreAudio alows
multiple programs to access the soundcard concurrently.
Only LAAGA on Linux provided comparable performance
to MacOS X while allowing multiple programs access to the
soundcard.

6 Conclusions

All of the current desktop operating systems offer
excellent latency performance under some conditions,
though most of them cannot deliver this performance in al
situations. Thisis a substantial improvement over previous
results (Brandt and Dannenberg 1998; Freed, Chaudhary,
and Davila 1997), but because of the inconsistency of the
results more improvement is necessary before reliable low-
latency performance can be expected from desktop
operating systems.

In conclusion, Linux showed the best performancein the
tests without load while MacOS X showed the best
performance in the tests with load. Windows and MacOS 8
and 9 produced some of the best results when using a
professional soundcard with the ASIO API but showed poor
performance when using the standard APIs and consumer-
grade soundcards.

7 Acknowledgements

We would like to thank Phil Burk and all of the
contributors to the excellent PortAudio library. Without
their hard work this research would have been much more
difficult. Also, we would like to thank Paul Davis, the
author of LAAGA and the AL SA support for the RME
Hammerfall soundcard. His efforts are one of the main
reasons that professional-quality audio work is possible on
Linux. Finally, many of these tests were performed on
equipment generously donated through the Intel Technology
for Education 2000 Program.

References

Apple. 2001. Audio and MIDI on Mac OS X: Preliminary
Documentation. Apple Computer, Inc.

Barabanov, M. 1997. A Linux-based real-time operating
system. MS thesis, New Mexico Institute of Mining and
Technology.

Van Buskirk, J. E., and J. A. Bibbo. 1999. Filed June 10,
1998. Synthesizer system utilizing mass storage devices
for real time, low latency access of musical instrument
digital samples. United States Patent No. US6,008,446.

Brandt, E., and R. B. Dannenberg. 1998. Low-latency music
software using off-the-shelf operating systems. In
Proceedings of the International Computer Music
Conference, 137-41.

Freed, A., A. Chaudhary, and B. Davila. 1997. Operating
systems latency measurement and analysis for sound
synthesis and processing applications. In Proceedings of
the International Computer Music Conference, 479-81.

Petzold, C. 1998. Programming Windows. 5th ed.
Redmond, WA: Microsoft Press.

Steinberg. 1999. Seinberg Audio Streaming |nput Output
Soecification: Development Kit 2.0. Steinberg Soft- und
Hardware GmbH.

