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ABSTRACT: A new sound synthesis technique, recurrent neural network sound synthesis was shown 
in 1995. Recurrent neural network is a neural network that each neuron connects recurrently. 

In this paper, sound variations by this recurrent neural network model are shown. One variation is from 
relatively small network, and another variation is from relatively large network. The former is suitable for 
realtime sound synthesis, and the latter is for modifying the sound after resynthesis of the original sound. 

1 Introduction 

Study of sound synthesis has a long history in computer music and many models have been presented. 
A new sound synthesis model using recurrent neural network was shown in 1995, and its capability of 

learning nonlinear dynamics was presented [Ohya, 19951. 
In this paper, sound variations using recurrent neural network model are shown. One sound variation is 

from relatively small network, and another sound variation is from large network. 
Recurrent neural network is a neural network that each neuron connects recurrently. RNNS (Recurrent 

Neural Network Synthesis) belongs to nonlinear sound synthesis. The following is some features of RNNS: 
1) dynamics of neurons are directly used for waveform itself 2) RNNS is like FM synthesis, each neuron 
corresponds to each operator in FM synthesis model 3) complex waveforms are produced from relatively 
small number of neurons 4) resynthesis is also possible with relatively large number of neurons by learning 
algorithm. 

2 Single Neuron Model and Recurrent Neural Network 

As a single neuron model, a continuous-time, continuous-variable neuron model is adopted. Therefore output 
value from any single neuron can be directly used for waveform. 

Equation of dynamics of each neuron in a recurrent neural network is given ([Ohya, 19951) as 

where u:(t) is the i-th unit output at a time t, 7; a time delay constant, f(z) a sigmoid function, I, an 
external input of the i-th unit, W,j a connection weight from the j-th unit to the i-th unit. 

3 Sound Variation 1: Small Network of Several Neurons 

Recurrent Neural Network can generate very complex dynamics pattern because of its recurrent connections 
even if it is composed of relatively small number of neurons. 

As the 1st variation of RNNS, sound synthesis by small recurrent neural network is shown. This model 
is useful for realtime software sound synthesis because its relatively less computation. 

3.1 1 pair model 

“1 pair model” is composed of one pair neuron and another output neuron (Fig. 2). Each neuron of 
the pair neuron is connected each other and is also connected to itself. This pair neuron is the smallest 
recurrent neural network architecture. The output neuron receives two output values from the pair neuron 
and computes output value, which is waveform itself. 



Figure 1: waveform example of 1 pair model Figure 2: 1 pair 
model architecture 
and a parameter ex- 
ample 

Dynamics of the pair neuron is completely described by eight parameters, 2 initial values, 2 time delay 
constants, 4 connection weight values. In BII &dimension space of parameters, the region which gives this 
system lasting oscillation seems to be small. One of such region is given if weight values connecting each 
other are asymmetric. In this condition, 2 output values of a pair neuron spikes by turns, and this pair 
neuron functions ins a kind of oscillator. It is also possible to use only one of the outputs from the pair 
neuron as waveform itself, but the third neuron, the output neuron, is used for producing more complex, 
rich waveform. 

An example of a waveform of 1 pair model is shown in Fig. 1, where “~0” is the output from the neuron 
No.0, “~1” is the output from the neuron No.1, “Output” is the output from the output neuron, that is 
waveform itself. 

Frequency of the waveform mainly depends on the time delay constant T, and the total waveform chiefly 
depends on values of connection weight. 

3.2 2 pair model, 3 pair model 

2 pair model 

Figure 3: waveform example of 2 pair Figure 4: 2 pair model BP Figure 5: 3 op- 
model chitecture and a parame- erator model in 

ter example FM 

2 pair model is composed of 2 pair neurons and 1 output neuron (Fig. 4). This model has 2 oscillators, 
frequency of each oscillator depends on its time delay constant 7. Therefore this model resembles 3 operator 



Figure 6: waveform example of 3 pair Figure 7: 3 pair model architecture and 
model a parameter example 

model in FM synthesis in a sense (Fig. 5). Modifying two time delay constants, various waveform can be 
produced (Fig. 3). 

As shown in Fig. 4, in this example, the ratio of the 2 time delay constants of 2 pair neurons is 1.5, thus 
harmonics of the sound can be controlled. 

And more, by slightly modifying the time delay constant of one of neurons (ex. Neuron No.10 in Fig. 4), 
the output of the right pair neuron can be slightly fluctuated, and the produced sound also can be slightly 
fluctuated. 

In the same way, we can produce more complex waveform by adding more pair neurons. Fig. 6 is an 
example of 3 pair model. 

4 Sound Variation 2: Resynthesis by Recurrent Neural Network 

Figure 8: sampled violin sound 
data 

Figure 10: head 300 samples of 
the teacher signals 

Resynthesis of the original sound of the piano was shown by the author ([Ohya, 19951). But in this case, 
the amplitude of the piano sound data was always decreasing, and it was rather difficult to select good 
teacher signals. This time, violin is adopted as a lasting sound source. 

The data were sampled in 16.bit integer format at a sampling rate of 22.05 kHz. The note was G, open 
4th string. This part, shown between the two arrows in Fig.8, is used for teacher signals. It has 3792 samples, 
34 periods of 0.17 second. Fig.10 is the head part of this teacher signals. 

To look into the dynamics of the data, J-dimensional phase space trajectory is also shown (Fig.11). Time 
lag constant is set to 30 samples. 

As an architecture of recurrent neural network, an APOLONN is adopted [Murakami, 19911 [Sato, 1990a] 
[Sate, 1990b] [&to, 199Oc]. 



Figure 11: phase trajectory of Figure 12: resynthesized wave- 
teacher signals form: iter=5000, 300 samples 

Figure 13: resynthesized wave- 
form: iter=lOO, 300 samples 

The learning process was done by a software simulation on a Workstation Sun Ultral. 25 pairs of 
oscillators were used in the simulation. The ratio of the 71 between two neighboring pairs was 0.9. 

One of the leading feature of RNNS is the possibility of resynthesis of the sound using connection weight 
values. This system is fully described by many differential equations, time unlimited sound resynthesis is 
possible. 

By reading connection weight after learning of 5000 iterations, new sound is resynthesized. The head 300 
samples of the sound is shown in Fig.12. 

On the other hand, Pig.19 is a waveform of another sound by reading connection weight during learning 
of only 100 iterations. This figure shows possibilities of a harsh decreasing sound resynthesis without any 
envelope filters. 

5 summary 

Sound variations by RNNS is shown. It is shown that it is possible to synthesis new sound by recurrent 
neural network. Since this model is composed of relatively small number of neurons, it is possible to synthesis 
in software. 

And another variation of resynthesis by RNNS is shown. Using connection weight values after learning 
process or during learning process, both resynthesis of the original sound and synthesis of new sound are 
shown. 
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