OBJECTS, TIME AND CONSTRAINTS IN OPENMUSIC

Carlos Agon, Gérard Assayag, Olivier Delerue, Camilo Rueda.
{agonc,assayag,delerue,crueda}@ircam.fr
IRCAM - 1 PI. Stravinsky. F-75004 Paris, France.

1. Abstract

OpenMusic is a object oriented visual programming environment for music composebasitdsorMacintosh
CommonLisp and Common Lisp Object System. It showsseveral original features, such as reflexivity,
metaprogrammation capacities, handling of the duddaggweenmusical time and computational time, and
provideswith a framework of predefinedmusical objects for handling sound, midhd musical notation.
Common Music Notation in OpenMusic is an extensiorCbfN, a publicdomainnotation package byaBill
Schottstaedt [SCO98].

2. Objects

2.1. Underlying Object Model.

Broadly speaking, basic calculus fabject-orientedprogramminginherited the approach imposed by the
precursory language Simula and its followers. The tentatives to fornthiizéamily of objectmodelsused the
concepts of parametripolymorphism or true polymorphisffCaWe85]. More recently, languagdmsed on
multiple-dispatching (methodbat dispatch on a product df/pes ratherthan a single type) such &.0S
[Steel90] were also formalized [Cast98], using concepts of overloading or ad-hoc polymorphism. As OpenMusic,
based on CLOS, may very well be formally described in this way, we will give here a brief summary&f-the
calculus used by [Cast98]. We restrain to the extensiaradlculus by theconcept of generiéunctionswhich

is at the base of&-calculus. Agenericfunction is simply a collection of simple functions-@bstractions),
which we will call methods. We must also distinguish the simple applicatidicated by «.» from the
application ofgenericfunctions indicated bythe operator . Thus agenericfunction with n methods can be
specified bythe expression(€& M; & M, & ...& M,)). The type of ageneric function made upwith

methods M, of the type U, - V, is defined bfU;, - V,U, - V,,...,U, - V.}. In A&-calculus,
howevernot any set ofnethodtypescan be seen abe type for agenericfunction. A set of methods types
{U, - VZ}, is a generic function type iff for all ilj | the two following conditions are satisfied:
U <u j O V< \/J
U is maximum inLB(Ui,Uj) O Ohdl , y,=U
where LB(U, V) indicates the set of common lower boundaries of types U and V. This enforces consistency in the

case of multiple inheritance. The application of a generic function G to an argument NUf tymesists in the
selection of a methoMi among the methods of G, then the applicatioMpfto N.

(&M &M, &...& M,)* N > Mj.N
Note that) may not be contained in the ek of input types to thgenericfunction. In suchcase we select
the methodM; satisfying :U; = min,_; {U, U <U,}. The < ordering is defined by the class precedeliste
CPL. The CPLfor class C is a topologicarder ofthe superclasses of C. An object in #&-calculus is a
simple register|, = T,...,|. = T. . A register can be seen as a set of labelled fieldsnlkdre | is calledabel

and T is called valueThere is a reductiorule for thefield selection: |, =T,,...,1, =T, . > T,.

We add also the context rules for general expressions in A&—calculus:
E-EO (El>ENO(.I1=E.)>(.l=E".).) If objectsareseen as registers, classed then be

seen as generators i@&gisters. We assume thiiere is a generifunction «new»andthat eachclassdefines a
method for this generic function. We also assume in what follows that the type of an object is its class. This is
the rule for subtyping in the case of generic functions:

0001,003S -T <Y, -V,

{§ - Tj}jDJ S{Ui - \/i}iDI
Thus, the inheritance mechanism for M&e- calculus is defined by the subtypirgdthe mechanism afethod
selection. If we call a generic function of ty§€ — T}, with an instance of the class C, then thethod

min,_, .{G|C < C} will be called. IfC, is C, then the object uses the metefinedfor its class, on the

other hand ifC, > C, then the object uses a method that its class inherited.

In the approachdescribechere, objectsre passed amguments tayenericfunctions. In the classicalpproach,
messages were rather passed to objects. Significant feature\&f-tbalculus are :
« it allows the multiple dispatch (i.e. capacity to select a methothlking into account other arguments than
the first one).
¢ it makes it possible to add methods to an existing class without modifying the class and its instances. This is
a critical issue in OpenMusic which is a fully dynamic environment.
¢ generic functions are first-order citizens ; for example wecan write the following expression:

A€~ AxC.(me (me X))

2.2. A Visual Object Model.

OpenMusic is a multiple-dispatch, generic-functibasedvisual object programming language. f#armal
description of the lexicon, syntaandsemantics of OpenMusiandits preciserelation toA&—calculus will be
found in [AgAu98]. In this section we show only a pragmaléscription of conceptsking part in oumbject
model.

A program (patch) in OpenMusic is a graphical layout on the screen, made of composed frames &agiegle
Composed framesontain simpleframes orare empty. The objects belonging to our calculus, (i.e. classes,
methods, slotsgeneric-functions, instancegndits rules (i.e.multiple-inheritance)are visually represented as
composed frames or simple frames. Several different frames (i.e. different representgpioimé of views) may

be produced for the same object. The simple frames representing an object are called object viayenetally
appear as icons. The composed frames representing an objediteatebject containers. They generapiyovide

a graphical editor for the object. The container for a class rdmnedcollection of simpleframes representing
slots. Slots have information about their name, their typiefaultvalue and aflag thatindicates ifthe slot is
public or private. Figure 1 shows the structure of the class « chord », which containts 5 slots belonging to type
list.

0 =—— (CHORD ==
Slots Show as |/0 Default valus |

) midic= & [reuuny] =

[} 'vel] LI (5000 BS00 6700

[) loffset [[’_‘

[y E %) [To00]

[) 'chan [A [— ~|
4] D7

Figure 1. A chord class. Figure 2. A chord factory.

Users carcreateinstances of thehordclass with theaid of aparticularbox called afactory (fig. 2). A chord
factory contains a number of inputs corresponding to the public slots of the class pkpeociatinput on the
left. There are asnany outputs as input§Vhen evaluatingi.e. option-clicking) an output aew instance is
created.The valuegeturned byoutlets are, from left taight, the instance itself, then tloarrent value of its
public slots.An instance can be visualized graphically as an icon, allowing its use within a patch (fige@).
exist different types of containers for theeatedinstance.Fig. 3 shows a common music notatieditor and a
structure editor for the same instance of class chord. The last editor, although very primitive, is aljemeraly
in the sense that arkind of instance can beiewed and editedhat way. Theeditor shows the layers of
inheritance (a chord class inherits from a mgeaeralsuperposition class). Slotsan beeditedhere by directly
typing in values or dragging objects.

O=——cHoRD=HB8 CHORD
|P|I|.|II| chord
5 luel loffset ldur lchan
=—— || |superposition
1 EXIm] D o Imidic =HH
@®nidic Odun i] 1 z =
g O charne! O aur Z
4 [[v]2

Figure 3

The container of genericfunction isvisualized by aset of simpleframes representing metho(fgy. 4). A

simple framefor a method contains the name of tfenericfunction that owns the method, an icon for that
function and a list of type specializers (small icons on top) for each parameter of the method. In our example, the
generichinary function« transpose » idefinedfor the couples of typeévoice , integer),(note, integer) and
(measure, integer). Usensay, with theaid of amethod editorcreatenew methods or modifglreadyexisting

ones. Fig. 4 shows thgraphical definition of themethode transpose for ghord and arinteger. The icon
representing the first input to the method has small outlets that represent the public slots of class chord. The box
« slots » isreader-writerbox automaticallydefinedfor eachclass in the system. In the same wager-
redefinable initialisation methods are automatically generated.

[} TRANSPOSE 2] =]
@& primary) before) after |=]
o 1 =
[0 =—TRANSPOSE B |I|
input input1
iz oz [y
ranspose transpose transpose - L‘ +
[l 07 o hord ——— —————
j g 0O =—————VIRtHORD=—HIB
slots l Slots Show as /0 Default value |~
— ot B
8 -
sutput | wvirchord
11— P v J D17
Figure 4 Figure 5

In much the same way, users can create and redefine their own classes. In the following examplee (e dip

a new class called virchord which inherits from the class chord. In the composed frame representing inheritance, a
new class icon is added, with an arrow that symbolizes the inheritance path. When opevinedteicon, the

user has access to the class editor, where he may add and edit new sleitst Tlass isspecified by dragging a

class icon into the frame.

2.3. Implementation.

Rather than a simple graphical interface to CLOSenMusic(OM) may beregarded as aextension ofCLOS
with metaprogrammingechniquesThis involves basically the possibility of subclassimgtaclasses (such as
standard-clasghe class whose instancase themselves classesnd then defining new methods for these
subclasses. Fig. 6 shows the hierarchy of OM classes. CLOS classes are in bold framed rectangles.

OMOBIECT

OMEBASICOBIECT|

iconlDy

frames
editorframes

STANDARD-CLASS
omPATCH
OMFRAME
priciate gisos
2T AND ARD-METHOD) s aECE
OMLISFFUH| [OMINS
ReatFimdisp | | RealkTnowence | [LEFRAME| [oMcomMPosFRAME|
GMMETHOD)]
ETAND ARDSLOT |21 ANDARD-GEHERIC-FUNHCTION] o]
= o= e
OMBLOT OMGERFUH|
CHMEIMPLEVIEY OMEDITOR

Figure 6

Almost all CLOSmeta-classes have beerthogonallyintegrated inthe visual formalism. The leftide of the

tree in fig. 6 defines OM metaclassesvhereasthe right side (rooted atOMFrame) implements the visual
paradigm. Every OM object has a unique name and it points to a lisineés ofclass OMsimpleViewas well

as a list of editors of class OMEditdtote that class OMFrame inherits from OMBasicObjébis means that

classes that describe the visual behaviour of OM are themselves ordinary OM objects, and may be manipulated as
such. Thegraphical part othis classdesign is very generaindflexible and might be easilyimplemented in

another environment.

As for the dynamic part of this model, we will consider that an object is composed by a set of elegatinés

with a relation over them. A class object, for example, is composed by an ordered list ofgdoisi@ function

consists of a set of methods, a patch contains a list of boxes, an editor a list of frames, etc. A proépevicof

functions thatare applicable to all instances @MBasicObjecthas beendefined in order tocontrol their

behaviour. Examples of such functions are :

e get-element which returns for any OMBasicObject the list of its elements.

« get-simple-view and get-editor return the two possible graphical representations of an object.

e open-editor-objectalls the function get-simple-view f@achelement of the object. A@MEditor is then
constructed with all these simple views as elements.

¢ add-element and remove-element allow editing of any basic object.

Theselast functionsare mainly called by the drag&drop mechanism, which is aentralissue in OM user

interface. It is defined as an action between a dragged OMsimpleView and a target OMEditor. Allsatdrbp

predicates determine whether the sowbpect slotcan beadded tothe target objecslot. Thedrop operation is

performedonly when thosepredicateshold. This results in the invocation of tleeld-elemenfunction with

arguments dragged and target. First, add-element makes the drop operation visually explicitdélegatés the

message add-element to the objects pointed at by tigect » slots in thedragged andarget framesso as to

launch the edition of the relevant OMBasicObject. Other OM operations such as movearsbbeet follow a

similar mechanism. This set of methadifinesthe dynamicpart of the languagehereashe classree defines

the static part.

2.4. Visual meta-programming

In the same way we extended CLOS by usingi¢leanique ofmetaprogramming, the usean makeextensions
to the OpenMusic language. The principal tools for the metaprograammesubclassing inside the statitass
definition partand redefining functions in thedynamic protocol part.Fig. 7 shows théierarchical tree of
metaclasses and the generic fonctions defined for each claseeatleecan be surprised bthe simplicity of the
protocol. In general, a protoctdo muchspecified isnot very modularthus changesnust bedone in several
places, which makes the modifications wety reliable ; on the othdrandpoor specification of the protocol
produces a difficulty to find the place for including modifications. This is the best compromise we found.

O=————mta=——————H| [D=———meta=————H
- - -
m Meta H]
- ompateh M
i get-elements ambos i cobject
. boxes
13
. absouts opened | torframe
patch-pathnams l l
L] Meta
¥ Fan OMOSnericfunction omg-select % F @
un
@ rumouts Mela ompatch ommethod omgenericfunction ombox
omg-unse lect hd hd h T
. inputs—defaul t l
@ inputsdoc DMeI:al
om-box-ualue @
- @ ommethod
onboxpatch | —
@ codetun Meta ad =
onng-rename 4 b |z
. araph- furn Ll
Meta
=) ombox omng-add-e | ement
. reference
Meta
. value ommg-remove-e | ement
= [omboxpatch
= -
4] ARE [z

The following example (Fig. 8) shows thedefinition ofthe genericprotocol function OM-box-value which is
called whenevethe output of a box igvaluated. Graphical redefinition dfs three methods changes the
behaviour of the language by introducing a viswmate of everevaluation. First methodlefinedwith qualifier

« before », selects any currently evaluated box before its execution. The second method, with«qaddiies,
unselects the boafterits evaluation. Finally thenethoddefinedfor the classe OMBoxPatch opens tbatch
editor window for any currently evaluated subpatch. It then calls the function OM-box-value on thgastmect
icon) thatrepresentshe output of the patch. This output object will be highlightduk to the « before »
method), then propagate the om-box-value messagernigectechoxes, causing them to highlight in turn, and
finally unhighlight because of the « after » method.

0 ==OM-BOX-YALUE=—= =
) primary @ before) after = ® primary) before) after —

[0 ==OM-BOX-YALUE 0 =———0M-BOX-YALUE

) primary @ before) after

=]
[m
[m

s @ || & S

inout inputl inout Trput T
% LisF
nth
Meta Meta slots
omg—select omg-unselect y—‘

ela
openedi tor frame
/ H om=box—ualue
super-method
3 3 W Lo
output output ETe

output

S

- -
Z [] % 4] ¥

Figure 8

a
-

2.5. Musical Object Framework.
A summary of the predefined musical classes currently available in OM is given in fig. 9.

fp=—— spre=——— 5|
ifs
3888
@ 12381
- - s -
simple-score-alemen sequsnce* superﬂp%sltlon

|
firr @ B #= -

[=Y SRR
<« —]

mote r*e'st so&nd midifile uoivce mea&ur‘e gr*gup char‘d povlg
Figure 9

3. Time

3.1. Metric Time

A set ofelementary rhythmical operators has belefined andmplemented in Opemusic. These work on
musical structures such as voicasd take advantage ofthis hierarchical representation by preserving the
embedment information of the initial data into their results. dé&cribe heréwo examples of such rhythmical
operators.

3.1.1. Fusion

First is the« fusion » ofmusical structures this operation consist in merging together tdifferent voices.
The result is a voice that contains simultaneously the notes in both the initial structures.

—i

|—§—| —3—

reE——————=lilrsererar ey |
I\._I.’"l | - — - | I I
Y < < & = Py - < o &
T 3 1
h ' I 3I II h :
A i T i | [2 | | | | | | |
I ™ — E—— At o g bel e he he |
I_U‘,.i | (RN LA 3 | |
Y)] - O

Figure 10: example of fusion of musical structures

In Figure 10 we describe on the left the initial voices that were clarsgnonthe right, twodifferent results of
this operation according to the choice of which of the initial voice wdlude the other.Experienceshows that
tuplets embedments are simpler when the higher irregular subdivision includes the other.

3.1.2. Masking operation

Another example of rhythmical operation is the masking of musical structures. This operaion tose to

the previous one, in the sense that their algorithrasgery similar. It operates oriwo voicesandperforms a
masking effect on one of them (data voice), using the other one as a mask (masking voice). As a reaalt, the
voice is muted during the masking voice’s activity or inactivity. In other words, notes in the maskingvioice
be propagated a®sts in thedatavoice if the maskingparameter isset to « activity ». The « inactivity »

alternative propagates rests of the masking voice into the data voice.
r 5

. 5 . A et

A = =z J— T3y —
g i . - i O T W B Y ™ .~ — |
|~ y i — 7 Sz H g [¥ I
[o, T ! — R e fe 14 I
IS 1# fTe 4 3] 1 T

S| i i il

T 5 .

A | | 1
= ¥
. — Y ¥ [" S—
s I P —— o
R o 3 s LY i

Py i I 3 7 T = & o 1 1

o L

Figure 11: example of masking of musical structures

On Figure 11, the left system shows the initial voices chosen for the masking operation : the uppeussdff is
as datavhereaghe lower one isused as anask. On the right, weescribethe two different results ofthis
operationdepending orwhetherthe maskingparameter isset to« activity » or « inactivity ».The fusion of
these two resulting voices brings back to the initial data voice.

3.1.3. Regularisation

Eventually, another complementary family ajjerators is beingleveloped :these aim at building &levant
musical structure from objects that eitliem’'t haveyet any structure oaretoo complex from the musical
notation point of view.Indeed,Open Music allows for instance tefine musical structures startinfom
numeric values obtained #ise result of an algorithmic calculati@mdinterpreted as &st of durations.These
values may not however be directly usable for musical notation and need to go through a processetisatrevill
the compatibility of the resulting structure with the musical notation system.

For instance, the«regularisation »operator will perform such a task bydetecting irrelevant irregular
subdivisions within a musical structuaed bysuggesting a compromisgetweenadding embeddingevels and
guantification.

_ _ T
J A 60 41 T, 60" — 3
r X I
[£ W * S r gl
-4 — LR AN A 4 [
e F-‘- L 'y F"f,.#"' — ®

Figure 12 : example of the regularisation operation.

Figure 12 shows an example of the « regularisation » operator : we define here a musical structuréastarting
the following list of duration (12 8 15 6) that we wish to represent withirdtination of aguarternote. On the
left we representhis structure asgs, i.e. without any transformation. On the right, tlsisucture haseen
transformed by this operation by a quantification factor of 42/41 of a quarteambtadding an embedditevel.

The four notes still have the duration of a quarter note, buhtmnayagés now (12 8 16 6) which means the
F natural has been slightly extended with respect to the other notes’ duration.

3.2. Maguettes : the duality of musical and computation time.

The maquette is an original concept in OM by whichadeesghe problem of combininglesign ofhigh level

hierarchical musical structures, arrangement of musical material in time, and specification of musical algorithms.
Simple patches may adress partially each of these problems but obviouslypiailitte with a fully integrated

solution. Just as patches, maquettes may appear as an icon abstraction or be opened in a maquette editor, which is
basically a 2-dimensionaurfacewith time flowing along the x-axis. On thsurface, temporal-boxese laid

down. Fig. 13 hsows three different representations for a maquette.

Maquette

Maguette

maquette

Figure 13

Just as classical boxes in a patch window, temporal-boxes haferencethe OM object theystand for)and a

value (the result of the last evaluation). In addition, there are 2 skfdset andextend,that specify thgosition

and the time-span. Fig. 14 shows the class tree. There are 3 types of references for a temporal-box :

¢ atemporal-object (an object that can answer to questions like start-time? and duration?). Musical objects like
chord, voice, etc. are obviously temporal objects.

e a patch. A patch is not a temporal-object, but it magaafrse compute a temporal-objecid deliver it as a
result. Patches that are a reference for temporal-boxes are special patches called temporal patches. An editor for
a temporal patch is shown in fig. 15 Any algorithm may be described here in the usual way (including call to
subpatches). By connecting the output of any box to the « tempout » special output, we state that the output
of this box do construct the temporal object we want to lay down at this place on the maquette.

¢ amaquette. Thus maquettes can be embedded into other maquettes.

O =—#tempobj2 =H1B
=
[=]*] . B
self
O =#empobj =H B |
=¥ = HE
o = —
OMPATCH self
OMMAQUETTE | OMTEMPORALPATCH OMEBOXTEMP
tampout [
mmetric gﬁg;td | tempout -
flag [Dz || [d [z
Figure 14 Figure 15 Figure 16

A protocol of reader-writergeneric functions is defined for handling algorithmically temporal-boxes in a
madquette : objdur (get/set the duration), starttime , mymaquette (get the onampugtte) , put-in-maginsert a
box in a maquette).

The special box< self » (fig. 17) stands for the temporal-batself. The public slotsavailable asoutlets are
offset, extend, reference, and flag (not discussed here). In fig. 17 we see a temporal-patch associated to a temporal-
box, where the temporal-object is justl@ordwhose pitchesreinput as a listandwhose duration iglirectly
derived from the offseslot from the self object. In thatase, everyime the temporal-box isnoved around in
time by the user, its duration will change accordingly.

In Figure 17 weadd asupplementary output to otemporal-patctand connectthe pitch-list slot of thechord
object to it. This output will appear as a small outlet on the temporal-box insideatiigette editor. Imnother
temporal-patch, we add an input. We haosv 2 temporal-boxes in the maquetteat wecan interconnect. As
can be seen, the pitch-list from the chord is reversed , transposed by 5 semitones, and sggjuisiocdactory,
resulting in a melodic motive. Wieavenow amaquettewith a chordwhose duratiordepends onts horizontal
placement, and a motive that depends on the content of the chord.

0 = #tempobj ==] 5| T = *tempobji =E B0 =—— "Maquette ———FEIH
i B\ [[F R % CIAEOINES[T«] DIaTuln]
2 || & b =
K3 el f ‘ a
- G
| Lisp @,_| LIsP =
|—|_|s l_liuer"se
+ v
5 A
B i
tempout output ~] temp!.lt -| T T T T I I I I I s
4] P K Dz 12 3 4 5 & 7 8 4 [z
Figure 17

Pushing this idea further, Figure 18 shows a sketch for a piano piece realized by composer Mikhail Malt. For the
sake ofsimplicity, connections have bedrdden, but the temporal-boxesare highly interconnectedUsing a

facility providedalong with maquetteshitmap imageshave beerdraggedover the boxes irorder to suggest
graphically musical processes.Vertical triangles are chords whose careptopagated tother boxes through
connexions. Other boxes contain musical objects defined by new classes like chord-aslinaithy amplitude
modulation etc. By changing the temporal-patches that define chords, all the pitch material is aheogialy

in the piece. By moving around the boxes, or stretching/compressing them, all thergangation ischanged

while keeping the logic that links the different pieces of material.

Finally, by using thetemporal-boxes protocol mentioned above, temporal-patchesgerarate dynamically

(e.g. by cloning themselves), when evaluated, other temporal-boxes, or manipulate existing one (e.g. moving or
scaling in time). In that case, the usesuld proceed intwo steps : first,designstatically a maquetteyith
interconnected boxes containing musical material or patches for constructiegcibnd, evaluatihe maquette |,

seeing new boxes appear, other move or even disappear.

smaguettemalt ————— [H

_———
CREDEE DIalnlr] e

=\
m i

L e e e e e e B L s e e s e e B e LIS S B S S S S Sy B
12 3 4 S5 6 7 8 9 10 11 12 13 1 15 16 17 18 18 20 21 22 23 2+ 25 26 27 28 20 30 31 32 33 34 35 36 37 38 30 40 47

Figure 18

il »

L

There is here the new concept of a sa@herethe static description of musical structared musical time, and

the definition of dynamic computational processes seamlessly coexist. The user baok godforth between

these two metaphors by choosing to see the maquette as a score (in traditional or graphical notation) or as a set of
interconnected processes. As external objects (e.g. MidiFiles, SoundFiles) may as well be impodadpby a

drag, maquettes may provide with an original environment for music creation.

Thus the title of this section, inspired by [Pratt92].

4. Constraints

4.1. Underlying Constraint Model

There is a built-in constraint solver in OM, called Csolvemakticular musicalnterfacelayer, called Situation
and expertised by composer Antoine Bonnet, allows for specific muscial consérinitgy. CSolver allows the
construction of objects out of two notions: poartd distance. An object contains one or mpments, spaced
according to distances which are evaluated in a given unit of measure and with respect to a usedistaptied
function. Distances can be internal or external depending on (respectively) whethamvolve pointscontained

in the same object or in several different objects. Intervals in a chord, for exanepigernal distancesvhereas

melodic intervals are external. The unit of measure can in this case be the semitone, the eighth tone or any other.
By default, points are considered tdiave integer coordinates in standardcartesian spaceThe sequence
[60,64,67],for example,could represent aabject (chord) consisting ofthreepoints (notes, pitclexpressed in

Midics) separated by distances of 4 and 3 semitones. The objects could also be rhythmic plans concerning a set of
articulation pointsspaced according to given set of temporal distances. An eighmbte, quintuplet omther

could bethe unit of measure inthis case. Thesequencd31/4,65/8,67/8],for example,might represent the
articulation points of a voice object. The unitroasure isl/8 (an eighth note). The first articulation point is
located at position 31/4. 3/8 and 1/4 are the distances separating consecutive points in this voice.

The specification of a problem for CSolver consists in supplying the number of obgtted,the space of
possibilities (region) for points, the numberditances in eacbbjectandthe set of possible values ftirese
distances. Built-in constraints establish thkowed configurations ofeach object and also that ofobject
combinations. Any point odistance ofany object or set of objectsan berelated by aconstraint. Built in
constraints convenientlglefine : generalprofiles that should follow the objects ; patterns that a given set of
distances shoulthatch ;predeterminegboints that should belong ®very solution ; equality or difference of

points or distances (or simultaneity, in the case of rhythms), etc.

CSolver is a finite domains system. Eamimputedobject is bydefault representedith two domain variables.

The first variable defines the position of the first point of the olgadthe secondvariabledefinesthe sequence

of distances separating each consecutive point in the object. The domairfict thariable is anyfinite set of
numbers. The domain of the second is a finite sefeqiences afiumbers. The lattedomain isusually large.

CSolver allows it to be structured in a tree hierarchy. A subset dfetiigencesharing a given propertgan be
collectedinto asubtree inthis hierarchy. At the level of theoot of this subtree, the whokubsequence is
represented by a domain of just one value: the shared property. A collection of (user supplied) functions computes
properties to be used to abstract $eguenceslomain at a specifiettvel. By default, CSolver uses two levels,

with the sum of the objectdistances athe abstracting property for the highest level. Thiggsy convenient

for harmonic problems, where the upper and lower voices are usually more constrained than the others.

The notion of"distance" in CSolver is notfixed. The composecan define her/his own by supplying the
appropriate functiongnormal,inverse)and neutral element. In musical applicatiotiés option can bevery
important. For example, some composesaceive harmonic material as aggregatefegfuencypartialsrelated

in precisely defined ways. Multiplicative distances are more relevant in this case.

The search engine of CSolver uses first-found forward checking [RuVa97], a lazy-evaluation version [DeMe94] of
forward checking extended to hierarchidalmains.Each domairevel keeps track othe position of thecurrent
consistent value at that level. These are values known to satisfy all constraints referring to that level. A judicious
choice ofdatastructures allows CSolver to efficientlypdatethesecurrent positions asnew constraints are
checked or when backtracking is needed.

No variable reordering is used (although included aspdion) since constraints for musical problegenerally

apply within shortsubsequencesyith little dependencieacross subsequencé#dl domain valuesre randomly
permuted prior to exploration. The reason tlus is that the musician is in mosases interested inobtaining

few but widelydifferent solutions to a given problenDue to domairpermutations, any new execution of the
same problem is likely to give a solution with different values for many of the variables.

Constraintscan relateany level of the domain of onariable to any level ofhe domain of anythers. Arc-
consistency [Mack77], via AC-7+ [VaRu96] an enhancement of the algorithm in [FBRe94] can also be performed
for binary constraints over upper domain levels.

Figure 19 shows an automatic harmonization of the beginning of Debussy’s &lrdgged in as anidifile).

There is a profile constraint for the bass that forces it to monotonically decrease, vertical interval constraints that
allow thirdsbetweenchord 0 and 7then addaugmentedourth. Other constraints on the densiyd ambitus

profiles are not shown here.

(=1

=2 — o5

4
force vaoice
woice profile) ——
fr o I BEE] DR 8 8 kee=ls)
—l

&£ J:gnb b e b -

; A
—— 1 1l
) 4 % 3 ;
chsol i

L e 134!""'4" ——4
@nidic () dun [(ZEe = H*w neasre
D channe| {:} dur |:| rhgtm
Figure 19.

5. Future Works

Futuredirection for OpenMusic developmeate : visual abstractions fosoundsynthesis, improving music
notation display in maquettes, refining the protocols for metaprogramamadgynamic construction of the
maquettes.

6. Aknowledgements

We wish to thank Bill Schottstaedt fars kind help onCMN, andMikhail Malt for his supportand brillant
early experimentation with OpenMusic.

6. References

[Ag098] A. Agon. An environment for computer assisted composition. PhD Thesis. IRCAM-Paris VI. Paris.
To come.

[Cast98] Castagna Giuseppe. Foundations of Object-oriented programming. ETAPS, Lisbone, 1998.
[Cawe85] Luca Cardelli, PetewWegner. On Understandingypes, data Abstraction and polymorphism.
Computing Surveys vol. 17 No 4, 1985.

[DeMe94] M. J. Dent, R. E. Mercer. Minimal forward checking. In BiternationalConference orTools with
Artificial Intelligence, New Orleans, USA, 1994.

[FBRe94] E. C. Freuder, C. Bessiere, J.r&gin. Usinginference toreducearc consistency computation. In
Proceedings of ECAI'94, Amsterdarm, The Netherlands, 1994.

[GAS 97] Gérard Assayag, Carlos Agon, Joshua Fineberg, Pétanappe. An ObjecOriented Visual
Environment For Musical Composition. Proceedings of the ICMC 97, Thessaloniki, 1997.

[Mack77] A. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99-118, 1997.
[Pratt92] V. Pratt, The Duality of TimandInformation. Proceedings o€ONCUR’92. Springer-Verlag, New
York, 1992.

[RuVa97] Camilo Rueda, Frar¥kalencia. Improvingforward checkingwith delayedevaluation. Inproceedings
of CLEI'97, Santiago, Chile, 1997.

[SCO 98] CMN by Bill Schottstaedt, http://ccrma-www.stanford.edu/CCRMA/Software/cmn/cmn.html
[Steel90] G.L. Steele. Common Lisp The Language. 2nd Edition. Digital Press. 1990.

[VaRu96] Frank Valencia, Camilo Rueda. Uso de deducciones de no viabilidad en el caknadlocdasistencia.
In Proceedings of CLEI96, Bogota, Colombia, 1996.

