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Abstract

The modal time-frequency distribution (TFD), a member of Cohen’s bilinear class of distributions, has
recently been applied to high resolution musical analysis and automated transcription. The smoothing
by the modal TFD attenuates undesirable crossterms along the surface but also reduces resolution, and
this smoothing is an effect applied uniformly over all time and frequency. We propose a frequency-
dependent computation of the modal TFD which allows localized, frequency-varying smoothing. In
addition, the model enables algorithms that adapt frequency-dependent tradeoffs based upon the data
(in onset detection, for example) or upon prior knowledge of frequency content (Western 12-tone
tuning, for example). This frequency-dependent model mirrors the multi-resolution properties of the

constant-Q spectrogram and wavelet decomposition.

1 Introduction

Automated music transcription systems usually
begin with a front-end stage that computes a time-
frequency representation of the audio signal. Subsequent
derivations of musical parameters, such as onset times
and pitch, are estimated from this time-frequency image.
An accurate, high-resolution time-frequency image leads
to improved parameter estimation, and ultimately,
improved transcription. For this reason, Cohen’s class of
bilinear time-frequency distributions [2], and more
specifically the modal TFD [4] have been introduced as
methods for generating high-resolution time-frequency
images from musical audio signals.

With respect to the more conventional spectrogram
and wavelet approaches, the modal TFD is superior in
resolution but presents several challenges. In this paper,
we consider extensions of the modal TFD to several
forms of frequency-dependent processing.

2 Motivation and Background

Beginning with a time-frequency image, we want to
estimate musically salient parameters: onset times, offset
times, partial frequencies, and so on. Unfortunately,
inherent estimation tradeoffs often conflict for different
parameters. For example, good time resolution is
required to accurately estimate onset times, but good
frequency resolution improves pitch estimates. If we can
improve the resolution of the front-end stage, we can
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perhaps simplify subsequent processing. For this reason,
computing a time-frequency representation in a
frequency-dependent manner may be desirable. As an
example, the constant-QQ spectrogram uses varying time-
support windows to effect a frequency-dependent
tradeoff in time-frequency resolution. A similar
frequency-dependent tradeoff is one of the attractive
features of wavelet transform approaches.

An adaptive approach to detecting and tracking the
partials of an instrument source also benefits from
frequency-dependent processing since the parameters of
the computation can be adapted independently in each
frequency region. Finally, a frequency-dependent
adaptive kernel can be used to compute a bilinear time-
frequency distribution with smoothing parameters that
are locally adapted in a frequency band rather than
applied to the global image.

The latter case is relevant to musical transcription.
The Wigner time-frequency distribution offers high
resolution in time and frequency but requires some form
of smoothing in order to suppress false indications of
signal energy (commonly referred to as crossterms).
Excessive smoothing can negate the gains in resolution;
we want to perform the minimum amount of smoothing
while still attenuating crossterms. Ideally, we would like
to perform varying amounts of smoothing in localized
regions of the time-frequency plane depending upon how
much smoothing is required in each region.

We consider the modal time-frequency distribution
as the front-end processor for transcription. This TFD
was specifically designed for the analysis of signals that
are well modeled by a sum of sinusoids [4]. Here, we



present a brief introduction to the modal TFD as it forms
the basis for our new frequency-dependent computation.
Cohen’s class of bilinear TFD’s can be written as” [2]:
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The input signal is s(t) and the function ¢(0,7) is
called the kernel, described here in the(0, 1) ambiguity
domain. (The(B,1)ambiguity domain is related to
the (t, » ) time-frequency domain by a two-dimensional
Fourier transform (see Figure 1).) As developed by
Cohen, the kernel completely determines the properties
of the time-frequency representation.
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Figure 1: TFD’s have equivalent representations in
four domains. The domains are related by Fourier
transforms (single arrows) or double Fourier
transforms (double arrows).

The modal TFD is characterized by the modal kernel
[4], which is given by:

dmk (0,1) = hp(0)H1(6) 2)
where H.(0) is a low-pass filter in the Fourier domain

(with corresponding time-domain impulse response
hp(t)). The function hg(t)is a time-domain window

function that truncates the infinite summation in (1) to
allow for realizable implementations. It is the low-pass
filter H(0) that is of interest, however, as it effects the

temporal smoothing necessary to suppress cross-terms.
Substituting the modal kernel into (1) we have:
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where

R(t,7;hp (1) = th(t ~ws(u+ s (u—I)du (4)

* Unless otherwise noted, all integrals are definite
integrals over the entire real line.

is the time-smoothed local autocorrelation function. The
notation ¥__,, indicates the Fourier transform from the
T -dimension to the  -dimension. We have dropped the
scaling by 4 and, for brevity, will similarly drop all
scaling factors in the sequel.

For suppression of crossterms, the low-pass cutoff
frequency of H.(8) (or its Fourier dual, h(t)as in (4)

above) must be chosen to be smaller than the smallest
frequency separation of components in the sum-of-
sinusoids signal. The cutoff frequency should, however,
be as large as possible in order to preserve temporal
detail. For a single musical note of known pitch, the
cutoff frequency is usually chosen to be slightly less than
the fundamental frequency. The modal kernel has been
used in this fashion for high-resolution analysis of piano
notes [3].

When the input signal is polyphonic, however, the
cutoff frequency must be chosen arbitrarily as the
minimum separation of partials in frequency is an
unknown quantity. Even if we had knowledge regarding
the tuning used in the music, we could only infer a
minimum partial frequency spacing as a function of

frequency. For example, if we knew that the music was

based on the Western 12-tone scale, then in the
frequency region of 115 Hz we could expect partials at
110 Hz (A2) and 116.5 Hz (A#2). The cutoff frequency
in this region could be chosen to be 6 Hz. In the
neighborhood of 900 Hz we could expect partials at 880
Hz (A5) and 932.3 Hz (A#5). The cutoff frequency in
this region would be 52 Hz and we would preserve more
temporal detail due to a smaller degree of smoothing.

Unfortunately, we cannot effect a varying degree of
smoothing since the cutoff frequency enters as a
parameter in the computation of (4) which occurs prior to
the Fourier transform in (3). We could compute several
TFD’s, each with a different cutoff frequency, and then
combine the results (as proposed in [4] for the constant-
Q modal TFD), but this approach is computationally
demanding and unnecessary as we shall see.

3 Derivation

The modal TFD in (3) is computed by forming the
smoothed autocorrelation in the temporal correlation
domain and then taking the Fourier transform to enter the
time-frequency domain (see Figure 1). An alternative
approach is to form the smoothed autocorrelation in the
spectral correlation domain and then compute a Fourier
transform to once again end up in the time-frequency
domain. We show that this approach gives us the desired
frequency-dependent computation for the modal TFD.

We can rewrite equation (1) in an equivalent form
that introduces computation in the spectral correlation
domain [1]:
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Now, S(®) is the Fourier transform of the input
signal s(t) , and ®(6,») is the kernel function expressed

in the spectral correlation domain. For the modal kernel,
we have:

Qg (8,0) = Hp(O)Hp(0) (6)
In the temporal correlation domain computation of
the modal TFD we required hg(t) to be a window

function of finite support in order to limit the support of
the smoothed correlation function R(t,t;hp(t)). In the

spectral correlation domain, Hy(0) is band-limited by
design and effectively limits the support of the
integration in (5). Hg(w) (the Fourier transform of
hg (1)) is not needed for realizability and we can remove
it from consideration. Since Hp(w) effects smoothing

along the frequency dimension and we want to preserve
as much frequency resolution as possible, we set
Hg(w) =06(w). Thatis, we choose Hg(w) so that there
is no smoothing in the frequency dimension. With this
substitution, the modal TFD computed in the spectral
correlation domain becomes:

Cok (1.0) = IHT(G)S(w + 98" (0 -Del%e (7)

Notice that frequency, © , is now a parameter in the
computation of (7), not a Fourier variable. This means
that for each value of ® , we can use a different low-pass
filter Hy(0). This freedom forms the basis of our
frequency-dependent computation.

We can simplify (7) somewhat if we can assume that
s(t) is real valued and that Hp(6) is real and

symmetric. Finally, if we assume that Hp(8) is an
“ideal” low-pass filter with cutoff frequency 6, then we
can write the modal TFD as:
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Allowing 0. to vary with frequency o

implements

frequency-dependent smoothing.

In the discrete implementation of the above, the
“ideal” low-pass filter is actually designed using the
frequency sampling method so that samples of Hr(6)

are 1 at computation points below 6, and 0 elsewhere.

This leads to a low-pass filter with some ripple in both
the passband and stopband which have a negligible effect
on the final outcome. (In addition, O, is usually small

compared to the sampling rate in a discrete
implementation so that the reduced range of the integral
means that the cost of computing the discrete
approximation of the integral is greatly reduced.)

A difficulty with the above formulation involves the
Fourier transform S(o). For long signals, this
computation may become impractical and some form of
overlapped windowing is necessary. The choice of
window length and degree of overlap is subject to
tradeoffs in frequency resolution, temporal localization,
and bias. We do not discuss these issues further in this
paper except to mention that different approximations to
S(w) can be used at a given time to implement these
tradeoffs in a frequency-dependent manner.

4 Applications

In Figure 2 we show a comparison between the
spectrogram and the modal kernel computed in the
spectral correlation domain. The source material consists
of a B3-C4 piano chord played 5 times in rapid
succession within a 800 ms span. The diagrams on the
left side of the figure show frequency variation as a
function of time in the neighborhood of 247 Hz and 262
Hz, corresponding to the fundamentals of B3 and C4,
respectively. These graphs were obtained by picking
peaks at the frequencies of interest. The entire 800 ms
record is shown. The diagrams on the right side of the
figure show amplitude variation as a function of time for
the fundamental of C4 at 262 Hz. The amplitude scale is
logarithmic, and once again, the entire 800 ms record is
shown. The 5 note-onsets are visible in the amplitude
variation graphs.

Graphs (a), (b), and (c) show results for the
spectrogram computed with a Hamming window of
duration 120 ms, 140 ms, and 160 ms, respectively. The
classic time-frequency tradeoff is visible in these graphs.
As the window becomes longer, the resolution in
frequency improves but the amplitude profile is
smoothed out, making the onsets more difficult to
discern. The crossovers visible in the frequency variation
graphs (the left side) of (a) and (b) are due to insufficient
frequency resolution; the peaks come so close together
that at certain times they merge and cease to be
resolvable. Only at a window duration of 160 ms does
the spectrogram clearly resolve the peaks for the entire
duration of the 5 notes. With this window duration,
however, the 3" and 5™ note onsets are nearly completely
obscured.

The graph in (d) shows the frequency-dependent
modal kernel computation for the same source material.
Both high frequency and high time resolution are
achieved simultaneously (note how the 3 and 5™ onsets
are more clearly resolved).

Figure 3 shows one potential benefit of the



frequency-dependent modal TFD. This figure shows
amplitude profiles of the same 5-chord sequence at 1044
Hz, the 5™ partial of the C4 note. The profiles have been
intentionally separated by 2 dB for clarity. The higher
curve represents the usual modal TFD, while the lower
curve shows the frequency-dependent computation. Note
how in the lower curve the 3 and 5™ note onsets have a
larger slope, and the separation between notes is
generally better. This improvement is due to the lower
smoothing at higher frequencies. In this case, the
assumption that the source material conformed to a
Western 12-tone scale was used to set the smoothing
frequency 8. based upon expected differences in partial

frequencies.

5 Conclusions

We have presented a frequency-dependent
implementation of the modal TFD as a front end
processor for automated transcription. This new
approach enables computationally efficient processing
strategies that vary with frequency. As an example,
frequency-dependent smoothing was shown to preserve
more time resolution at higher frequencies, thereby
reducing the uncertainty in onset detection.
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Figure 3: B3-C4 piano chord amplitude profile at 1044 Hz.

The higher curve is derived from the standard modal TFD

computation while the lower curve comes from the frequency-

dependent modal TFD. Note the sharper transition at the 3™
and 5™ onsets and the general improvement in note separation.
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Figure 2: Spectrogram and modal TFD of fundamentals for 5 successive B3-C4 piano chords. Parts (a), (b), and (c)
show the spectrogram using Hamming windows of length 120 ms, 140 ms, and 160 ms, respectively. Part (d) shows the
modal TFD analysis. The left side shows frequency-vs.-time graphs near 247 Hz and 262 Hz (i.e., the fundamentals of
B3 and C4). The right side shows log-amplitude-vs.-time graphs at 262 Hz. The modal TFD analysis results in good
simultaneous time and frequency resolution, while the spectrogram analysis sacrifices one for the other. Both time axes

extend over 800 ms.



