
Real-time Image and Video Processing in GEM
Mark Danks

University of California, San Diego
mdanks@cybermed.ucsd.edu, http://cybermed.ucsd.edu/mdanks

Abstract
The Graphics Environment for Multimedia, or GEM, is a visual programming language for real-time
computer graphics. Operating within the Pd environment, a digital audio and MIDI processing
program, GEM creates and manipulates polygonal graphics. Real-time image and video processing
have recently been added, increasing the artistic possibilities. Combined with Pd, users have access to
an integrated visual and sonic programming environment.

1 Introduction

The Graphics Environment for Multimedia (GEM) is
a real-time computer graphics language introduced in
1996 [1]. GEM was written with OpenGL, a
platform independent graphics library, created by
Silicon Graphics, Inc. (SGI). Originally designed for
the Max/FTS environment, GEM is now an integral
part of Pd [2], a real-time sound and graphics
processing program that runs on Silicon Graphics and
Windows NT computers. While it is compatible
with Max/FTS 0.26 patches, the patch is not the
focus of the program. Pd provides increased
flexibility and control over data (Pd stands for pure
data). For a more complete discussion, see Puckette
[3].

Developed by the author for computer
graphics, GEM supports polygonal manipulation,
controlling the graphics as objects, instead of as a
sequence of vertices. Recent developments in GEM
have increased the capabilities beyond polygonal
objects to include real-time image and video
processing. Instead of using a traditional
programming language and environment such as the
Graphics Library Utility Toolkit (GLUT) [4], GEM
provides a way for non-programmers to generate
complex, and artistic, graphics.

OpenGL was designed to be a high-
performance, window system independent interface to
computer graphics. Originally created by SGI,
OpenGL is now maintained by an Architectural
Review Board consisting of various computer
companies such as Intel, SGI, and Intergraph.
Because OpenGL is a standard which exists on many
different computer platforms, GEM can be ported to
any operating system which supports OpenGL.

2 Background

In OpenGL, color values are represented by four
floating point values, red, green, blue, and alpha.

The alpha value is used when two colors are blended
together. Alpha represents how translucent the color
is, from 0.0 being totally transparent, to 1.0 being
totally opaque. For instance, the alpha value can be
used to simulate colored glass which might appear in
a scene. Images and texture maps can have different
alpha values for each pixel. For example, any black
pixel can be made transparent so that one can see
through parts of an image.

OpenGL uses double buffering as a technique
to produce flicker free animation. All drawing occurs
in a hidden graphics window, which is swapped with
the viewable one when the drawing is done. This
process continues for each new frame. With single
buffered graphics, the user can see the graphics being
drawn instead of being presented with a completed
image. Single buffered graphics also do not clear the
frame buffer until the user designates it as such, so
that the graphics window acts like a canvas for
drawing.

3 Usage

MIDI and digital audio systems operate alongside
graphics and video systems, rather than in two
competing environments. By integrating both sight
and sound, GEM and Pd allow composers and artists
to create inter-media compositions which utilize both
visual and musical ideas. One instance of this
combination is the piece headingsouth by the author
[5].

3 . 1 Objects

Five types of objects exist in GEM. Geometrics, or
geos, are objects which create a concrete shape. The
non-geometrics, or non-geos, consist of objects
which affect the screen display, but do not have a
defined shape. The pix objects, which are the focus
of this paper, perform pixel operations and generate
images. The manipulators control and transform the
various graphics. The controls have global effects
and manage the graphics window.

3 . 2 Changes f rom Prev ious
Version

GEM has undergone some fundamental changes from
the previous version. In the old version, the start of a
GEM patch could be a square, which was then
connected to color and rotate, and finally to
render. This was accomplished through display
lists and other convoluted methods because GEM did
not mirror the OpenGL process. Now, a gemhead
starts the rendering process, which can be connected
to color and rotate, and finally to square.
The gemhead object connects to the graphics
window manager, and must be the first object in any
GEM chain. The color object sets the state for
subsequent vertex operations, while the square
object makes the vertex OpenGL commands. See
Figure 1 for an example of how to generate a red
square.

gemhead

1 0 0

rotate

square

color

Figure 1: A simple GEM patch

This change makes it easier for GEM to
integrate the various OpenGL operations. OpenGL is
a state based system [6] with only one state,
consisting of the various rotations, translations, and
scalings that have been applied, active at any one
time. Because the vertex commands are modified by
the current state, each chain can have multiple geo
objects. In Figure 1, the chain could be expanded to
include a translate and sphere after the
square. The sphere would also be red because the
color had been set earlier in the chain. This same
technique can be used with any of the manipulators,
because they establish the state for all of the geos.
Texture mapping is also a state, so images can be
used by multiple objects, assuming that a
pix_texture was used earlier in the chain. A
much more detailed explanation of state based
systems and transformation matrices appears in
Computer Graphics: Principles and Practice [7].

3 . 3 Image Processing

GEM makes it easy to load in images and process
them. The processing can range from gain controls

and thresholds to convolution kernels. Once an
image is loaded with a pix_image, any objects
“downstream” from the pix_image will affect the
pixels. See Figure 2 for a simple image patch which
applies a gain to the pixels. The three numbers used
in the example are the gain components for the red
green blue (RGB) values of each pixel.

gemhead

pix_image my_image.tif

.5 .8 .2

RGB gain

pix_gain

pix_draw

Figure 2: A simple image patch

A large number of objects have already been
deve loped , i nc lud ing p i x _ g a i n ,
pix_convolution, pix_threshold, and
pix_2grey (greyscale conversion). Many
traditional image processing filters exist as well [8].
Because GEM is written in C++, a complete class
hierarchy is provided, making it easy to create new
objects. All a developer needs to do to create a new
GEM object is to derive a new class.

GEM uses a demand driven, or pull system,
to reduce unneeded computation. Once an image has
been processed, the completed image is used until one
of the pix objects changes. The pix_buffer is an
object which helps with this demand based system.
The object buffers images so that computation is
only done when objects upstream from the
pix_buffer change. For example, if an image is
converted to grey scale with pix_2grey , the
processed image can be stored in a pix_buffer so
that it does not have to be recomputed every time
something “downstream” in the chain changes.

3 . 4 Video and Movie Processing

Video and movie processing use the same pix objects
as static image processing does, simplifying the
system for end users. Figure 3 demonstrates the same
processing as Figure 2, except that it uses a video
camera as the source signal. Internally, video is just
a stream of static images that are constantly being
changed. An object like pix_buffer would only
add extra computation because the image is never the
same.

gemhead

pix_video

0.5 0.8 0.1

RGB gain

pix_gain

pix_draw

Figure 3: A simple video patch

3 . 5 Polygonal Graphics

Instead of being a dedicated image processing
program, such as Adobe Photoshop, or a polygonal
based program, as many CAD packages are, GEM
integrates pixel processing with polygonal
manipulation in a manner which is transparent to the
end user.

As Pd combines MIDI with digital audio,
GEM integrates polygonal graphics with pixel based
graphics. Combinations range from displaying
images as under or overlays for polygonal graphics,
to texture mapping images or video onto objects. As
shown in Figure 4, it is easy to texture map video
onto a sphere. All of the geometrics provide
appropriate texture mapping coordinates, depending
on their shape. For instance, sphere wraps the
image around itself. Of course, all of the usual pixel
processing objects can be used at the same time.

gemhead

pix_video

pix_texture

sphere

Figure 4: Texture mapped video

Texture mapping is done by modulating the
polygonal graphic with the RGBA pixel values of the
image. Normally, the polygonal graphic has a white
color so that the image appears undistorted.
However, by changing the color of the polygon, the
color of the image can be modulated. Effects such as

lighting and alpha blending also contribute to the
texture. These techniques increase the processing
capabilities without having to modify the actual pixel
values.

3 . 6 Pixel Manipulation

Two powerful techniques for image processing which
use the alpha color value are compositing and alpha
masking. Compositing is the merging of multiple
images to generate a single new image. The blending
is controlled by the alpha values of the images. The
pix_composite object combines two images
together. Alpha masking is the technique of
“masking” out part of an image so that it becomes
transparent. An example patch using pix_mask is
shown in Figure 5.

gemhead

pix_image fractal.tif

gemhead

pix_image dancer.tif

pix_mask

alpha

pix_texture

square

Figure 5: A patch with pix_mask

In Figure 5, the mask is generated by
overlaying a second image on the primary image.
Instead of blending the colors of the two images
together as pix_composite does, pix_mask
changes the alpha values of one image based on the
RGB color values of another image. Figure 6 is an
example of an image that was created with
pix_mask . The original image was a fractal
pattern, and the mask was a dancer.

Another image technique can be achieved
using a single buffered window. Because the frame
buffer is not cleared, translating and rotating a line is
equivalent to painting with a brush. When the alpha
value of the “brush” is modified, an effect similar to
water color paint is produced [9]. Using pix_snap,
users can make a “snapshot” of the frame buffer and
use it as an image for processing and drawing.

Figure 6: Resultant image

One area of recent development is motion
and static image analysis. This processing ranges
from simple motion detection through the
comparison of sequential video frames, generating a
single number, to edge detection, a process which
determines the shapes of objects. The motion
analysis objects are made up of both static analyzers
for still images and time based objects for movies or
live video.

4 Summary

The new developments in GEM give increased
manipulation of pixel-based graphics. By integrating
polygonal and pixel graphics, non-programmers can
generate complex images which respond to real-time
controls. Because GEM is an easy to use visual
language, users do not need to learn a complex
programming interface. Combined with Pd, a single
unified environment has been created, bringing
together visual and sonic media for creative
expression.

References

[1] Danks, M. 1996. “The Graphics Environment
for Max,” Proceedings of the 1996 ICMC, San
Francisco, CA: International Computer Music
Association, pp. 67-70.

[2] Puckette, M. 1996. “Pure Data: another
integrated computer music environment,” The
2nd InterCollege Computer Music Concerts,
Kunitachi, Japan, pp. 37-41.

[3] Puckette, M. 1997. “Pure Data,” Proceedings of
the 1997 ICMC, San Francisco, CA:
International Computer Music Association.

[4] Kilgard, M. 1996. OpenGL Programming for the
X Window System, Reading, Mass.: Addison-
Wesley.

[5] Danks, M. 1996. headingsouth, San Diego.

[6] Neider, J., T. Davis, and M. Woo 1993. OpenGL
Programming Guide, Reading, Mass.: Addison-
Wesley.

[7] Foley, J., A. van Dam, S. Feiner, and J. Hughes
1990. Computer Graphics: Principles and
Practice, 2d ed., Reading, Mass.: Addison-
Wesley.

[8] Jain, A. 1989. Fundamentals of Digital Image
Processing, Englewood Cliffs, New Jersey:
Prentice-Hall.

[9] Haeberli, P., and M. Segal 1993. “Texture
Mapping as a Fundamental Drawing Primitive,”
Proceedings of the Fourth Eurographics
Workshop on Rendering, Paris, France.

