The Architecture and Musical Logic of Cmix

Paul Lansky

Music Department
Princeton University
Princeton Ncw Jersey
paul@princeton.edu

Abstract: Cmix is a toolkit for synthesis and analysis. It differs
substantially from most synthesis packages in that it has no scheduler and
accumulates mainly by mixing to disk. It has a scorcfile language written in
C-likc syntax which dispatches commands to the Cmix kernel and user
functions written in C, and reccives values in return. The basic argument of
the system is that it provides a relatively low-level, musically neutral
interface.

Cmix was wriltcn mainly to satisfy my nceds and not as a gencral purpose system
which would have universal appcal. I had worked with many music programs, beginning with
Music4B, written in BEFAP, back in the mid '60s, and gradually cvolved a working mecthod
which was musically satisfying, given my hardware resources, my compositional interests, and my
programming abilitics. Cmix is a distillation- of these mecthods, and though I didn’t write it with
any kind of distribution in mind, it has been adopted by others, and there scems to be gencral
confusion about what it is and what it does. Thercfore, I'd like to take this opportunity to explain
what it is, and the musical logic behind its architecture. :

Cmix is esscntially a toolkit. It is closer in spirit and architecture to the NeXT MusicKit, Fugue
and the Carnegie Mellon Midi Toolkit, than it is to Csound, Cmusic, Music4,5, ctc[1]. There
are several design principles behind Cmix which distinguish it from other systems. The first is
that its architecture cncourages the working methods of the user to emulate the protocols of a
rchearsal rather than of a performance. The guiding principle of a good' rehearsal is not to waste
valuable time rchearsing things which don’t need work, and to spend time on individual parts,
finally combining the wholc ensemble only when all the component parts are in shape, i.c. mixing.
To this end Cmix merely executes cach score command as it is occurs (there is no sorting), and it
normally mixes its output to disk, although an option for destructive writes is provided. Any part
of a soundfile may be addressed at any time. A conscquence of the adoption of the mix/rchearse
model is that a scheduler is not uscful, and instcad random-access to a soundfile is provided,
analogous to a rchearsal, in which one wants to be able to jump to arbitrary spots. Cmix is
therefore ill-suited to any kind of real time synthesis system. Instead, its intended domain is the
non-realtime creation and processing of soundfiles. Rchearse intelligently until you get it right.
Also implicit in these assumptions is the vicw that no matter how fast computers get, our musical
demands will always exceed their normal capacitics and therefore CPU time will always be
relatively expensive. (This assumption is undoubtedly false but it has kept me busy for ten years.)

As an cxtension of the rehearsal modcl, Cmix can also be thought to adopt a multi-track recording

studio model. Any number of tracks can be created, although thesc may not be channcls in the
ICMC GLASGOW 1990 PROCEEDINGS

audio scnse, but rather individual parts, giving a soundfile somcthing of the attributes of a data-
structure, or even a musical score. (I have worked with as many as 20 channels.) One of thc main
virtues of this architecture is that it is easy to start, stop and undo without losing data. At a
recording session it is customary to avoid re-recording an entire track, piece, or movement just
because a few errors occurred. In Cmix it is easy to accumulate results, selectively redo, and even
emulate the format of a multi-track recording session in which only at the final mixdown is
everything hcard at once.

The second design principle is to minimize the use of special purpose syntax, maximize the
availability of Unix tools. There is no synthesis or patching language as such, only a library of C
routines, unit-gencrators and utilitics to make it casy to get samples from soundfiles or invent
them, do somcthing with them, and mix them out to the samc or different soundfiles. All that is
necessary to write a Cmix application is a basic knowledge of C. All signal proccssing
applications cssentially just nced an initial call to position pointers on input and output files, a
loop through the samples with some form of i/o, and a clecanup call to update the soundfile
headers. A disadvantage to this is that the amount of time between making changes in instrument
design and hearing results is greater than in the case of a language such as Csound, for cxample,
which makes the test cycle much shorter. (In fact, when I want to do this sort of thing, I usc
Csound.) The advantage of this is that the specificity with which Cmix arbitrates musical
decisions is much lower than in most music synthesis packages, and comes closcr to the sensc of a
language compiler such as C, which itsclf is basically 90% of the architecture of Cmix. A
template for a simple Cmix instrument is: '

double dosomething(p,n_args)
float *p; /* array of values passed from score */
{
samplecount=setnote(start,dur,filenum): /* position pointers */
for(i=0; i<samplecount; i++) {
do something....
ADDOUT (something,filenum): /* write to soundfile */
} .
endnote(filenum); /* update headers */
return(whatever); /* return a value to score */

The scorefile will simply address this routinc dircctly by name, causc it to be invoked, pass it
arguments, and receive a possible retum value. Cmix thus tends to encourage the development of
applications rather than continuously evolving instruments. I have writtcn a powerful mixing and
editing program and a large number of special-purposc filtcr and sound-processing routines.

The third important design aspect is that the data specification language, the score in other words,
also uses C-like syntax and can be thought of as a kind of interpreted C. Cmix functions are
called by by name from a scorcfile and rcturn values to the scorefile for subsequent interpretation
if necessary. As aresult, it is possible to embed logic normally contained in instruments directly
in the scorcfile: trivially, time and pitch conversions, and less trivially, the consequences of

operations. The language is a subsct of C and is called Minc (for Minc Is Not C). It was writtcn
ICMC GLASGOW 1990 PROCEEDINGS '

by Lars Graf. Here is an example scorcfile from a hypothetical instrument which will process a
soundfile with some sort of filter and rctumn the resultant peak amplitude for subsequent
processing by another routine.

input("yawn") /* open input soundfile as file 0 */
output("cough™) /* open output soundfile as file 1 */
float start,peak,loop,limit,freq /* define variables */

freq=100

limit = 16000 /* test and loop */

if((peak = grunt(start=0,dur=3)) > limit) {
for(start=3; start < 21; start=start+1) {
peak = beep(start,dur(0),peak/2,pchcps(freq))
freq = freq + 100

In this casc grunt() and beep() arc uscr-written C functions, which will do somc operation on the
soundfile called "yawn" and write thc output, probably by mixing, to thc soundfile "cough".
Input(), output(), dur() and pchcps() arc built-in Cmix functions. /nput() opens an input file with
internal {ile id 0, output() opcns an output file with file id 1, dur(Q rctums the length of the input
file, and pchcps() converts hz to 8ve.pc form. There are currently 36 functions built into the Cmix
kernel which are recognized by Minc, and it is simple to add more. Since there is no distinction,
as far as Minc is concerned, between one C function and another, the user may write functions
whose sole purposc is to proccess sig.nals, to return valucs to Minc, or cven just tell the time of day.
The close relation between score and instrument reduces the independence of thesc two
components. A score itsclf may take on the characteristics of an instrument, and an instrument
may include score-like features such as the generation of notelists.

The real heart of the Cmix architecture thus lics in the collaboration between Mine and user-
written C functions. There is, morcover, no particular reason why the Cmix kernel and library
have to be called by uscr-written functions. In fact I have written some applications in which i/o
is donc using the NeXT Soundkit. Furthermore, since uscr functions have no requisite kernel
support it is casy to adapt the program in a number of ways. At Columbia, Mara Helmuth has
written a graphical instrument design program under X and I have also started writing a library of
Objective C functions. What I have found most uscful about Cmix is thc power gained by the
Minc interface, the generality of its low-level approach, and the fact that it is such a
preposterously simple system.. There arc a number of improvements which could be made, such
as the usc of shared librarics, an optional scheduler, a graphical interface, cic I also suspect that
rcaltime hardware coming in the next ycar or two is going to argue for new approaches, but my
inclination is to lct somcone clsc fuss with these, 1'd rather write music at this point.

Cmix is available by anonymous ftp from princeton.edu. Versions for Sun, Vax and NeXT are in
pub/music.

ICMC GLASGOW 1990 PROCEEDINGS

Cmix Organization

YNY

\A A

Cmix User Functions

Notes

[1]Danncnberg and Fraley, "Fugue: A Signal Manipulation Systcm with Lazy Evaluation and

Behavioral Abstraction”, Proceedings of the 1989 ICMC, pp. 76-79

Dannenberg, Roger B. (1986) The CMU MIDI Toolkit, Carnegic Mcllon University.

Jalfe, D. and Boynton, L, 1989. " An Overview of the Sound and Music Kits for the NeXT
Computer.” Computer Music Journal 13(2):48-55

Moore, F. Richard. 1990,. Elements of Computer Music, Englewood Cliffs: Prentice-Hall.

Vercoe, B. 1986. CSOUND: A Manual for the Audio Processing System and Supporting
Programs. MIT Media Lab.

ICMC GLASGOW 1990 PROCEEDINGS

