Software Developments
for the 4X Real-time System

E. Favreau , M. Fingerhut,
0. Koechlin, P. Potacsek
M. Puckette, R. Rowe

IRCAM 31, rue St. Merri 75004 Paris France
Tel: (1)4277 1233 ext. 48 15
uucp net address : seismo!ircam!ef,mf,ok,pp,msp,rowe

Abstract

The 4X system, realized at IRCAM by G. Di Giugno, is a
powerful tool for the synthesis and treatment of sound signals in
real-time. Recent developments in software for the 4X include :
ORPHE, a monitor for its 68000 host computer; 4xy, a compiler of
real-time control programs; MAX, a set of real-time process; and
graphic interfaces for the 4X patch language and PACOM console.
This paper will describe these new developments in building a
real-time application environment using the 4X.

1-INTRODUCTION

The 4X workstation consists of : a Sun host computer running
pNIX, connected to a real-time 68000 VME computer, the 4X
itself, and a DAC/ADC conversion module.

4X MUSICAL WORKSTATION
GENERAL DIAGRAM

IRCArt
O.KOECHLIN

'UNIX COMPUTER
GRAPHIC DISPLAY

.r___

= HOUSE t
REAL TIME COMPUTER
COLOR DISPLAY

SUN 2/130

‘?lsnm T

TTY CONSOLE

tt
3
‘tgf

369

4X REAL TIME DIGITAL SIGNAL PROCESSQR
AND AUDIO CONVERSION SYSTEM

iRCAN
O KODECHLIN

(designed and licensed by IRCAH,

COMPUFER Mmenufactured by SOGITEC, FRANCE)
2
arc
sy
INTERFACE c‘
(xous) 256 TiMERS
BUFFER
HEMORY
i
L
1ca CJ_.'

INTERFACE

HHHHHRHH

16 1N/OUT BALANCED AUDIO LINES

3
H

The real-time monitor ORPHEE, developed by M. Fingerhut, is
distributed between the VME and the host. The VME resident part
implements a Unix-like command language mainly used to
manipulate files on local and remote storage devices and to run
programs; provides such system services as input-output (to local
and remote files), memory allocation and remote program
invocation through Unix-like system calls; and services real-time
interrupt requests. The host's resident part services such remote
requests as file manipulations, navigation through its file system
and communications with host-resident processes.

4xy is a compiler of control programs which run on the VME
68000 and pilot the 4X in real-time during the execution of a given
application. 4xy was designed by R. Rowe and O. Koechlin, and
implemented by R. Rowe. Applications have to date included
programs for sampling live sounds, real-time FM models, test
programs for the 4X and its environment, and musical
compositions.

ICMC 86 Proceedings

4xy consists of a set of language extensions to the C programming
language and a run-time environment. The compiler is designed to
support the description of functions, called Actions, which will be
executed in real-time and regarded as running in parallel, and to
facilitate the interface of these Actions with the 4X patch language
and hardware peripheral environment. Many of the constructs in
4xy are meant to simplify the coding of compositional algorithms,
and to enhance the ability of such algorithms to be controlled in a
real-time environment.

MAX, realised by M. Puckette from MIT, is an implementation of a
set of real-time process scheduling and communication ideas aimed
at making it possible to design elements of a system which can be
combined quickly and without changing code.MAX is partly
written in 4xy language. MAX greatly speeds the development of
new 4X applications, making it possible to use a 4X patch without
writing a dedicated control program for it.

The 4X patch language of P. Potacsek, described in earlier
papers, has been equipped with a graphic interface on the Sun and
Macintosh workstations. The power of the 4X and the
multiplication of real-time controls has led to a system of increasing
complexity. The development of interactive graphic tools
addresses this complexity by providing an elegant and effecient
mechanism for generating both binary code to be used directly by
the system, and program text which can be incorporated in user
applications. In the case of the patch language, an interpreter is
loaded into the 4X and executed. This interpreter reads commands
sent it through a link with the graphic stations. On the screen, the
user can manipulate symbols representing various 4X and higher-

level synthesis modules, connecting them to produce and control
sound in real-time. Ensembles of such symbols can be grouped
and given a name, to be used in other configurations. Once a
patch has been developed, the source code for its realization can
be output to a file.

A similar tool for the PACOM control console has been developed
by Emmanuel Favreau. The same communication link is used
between the 4X and graphic host, which this time represents the
devices available on the console. The user can assign the output of
different devicés to registers in the 4X controlling the patch, and
immediately test the control on the console itself. The range of
values output by each device can be defined, as well as various
types of scaling which may be applied before sending a new
control value to the 4X. The combination of this tool with the
graphic patch tool described above engenders a powerful means of
designing and developing patch programs for the 4X and real-time
environments to control them,

2-ORPHEE
AREAL TIME, UNIX-LIKE MONITOR

(M. Fingerhut)

This chapter describes the programming environment of the 4X
system. This system is composed of three main parts: the 4X, the
VME (a 68000 VME-based system), and the host (a Sun station).It
provides a running environment for programs developed under
UNIX and used to control the 4X and MIDI devices.

ORPHEE, the real-time monitor, is distributed between the
VME and the host. The VME resident part (henceforth referred to
as the monitor) implements a Unix-like command language mainly
used to manipulate files on the storage devices stored in a
hierarchical directory structure, and to run programs; provides such
system services as input-output (to local and remote files), memory
allocation and remote program invocation through Unix-like system
calls; and services real-time interrupt requests from the 4X and
other peripheral devices.

ICMC 86 Proceedings

370

The host's resident part (henceforth called ti}c server) services
such remote requests as file manipulations, navigation through its
file system and communications with host resident processes.

2.1-Boot

ORPHEE can be directly booted from any of the local disks or
down-loaded from the host.

22-Development Tools

This section lists the specific tools used to prepare a program to
be run on the system.

User programs are typically distributed between the 4X and the
VME, and can be developed on the host or another remote
computer. The VME resident programs can be written either in C or
in an extension, called the 4xy language, while those to be run on
the 4X are written in a language called patch. In adddition to such
standard tools as editors, the following are available:

ccvme compiler for VME programs written in C
cpat compiler for 4X programs written in the patch language

csco compiler for VME programs written in the 4xy language

-Moni

The monitor commands available at the keyboard are mainly
used to manipulate local or remote files, and to navigate in the local
or remote file system.

Commands issued at the terminal are of one of two kinds: local
(i.e., executed by the monitor) or remote (shipped to the host and
executed by the server). Remote command names are preceded by
a period.

For example,ls is the list command executed locally, while .1s is
the shell (remote) list command. This also applies to command
files: one whose name is not preceded by a pertod will be executed
locally (even if it is found on the host), while if it is preceded by a
period it will be executed by the shell on the host.

Remote commands, being executed by the remote shell, can
manipulate only remote files. Local commands can manipulate
local files, and in most cases, also remote files.

4-Fi i

User files can reside either on the local or remote file system.
The local one is currently composed of 2 drives, 0 and I, drive 0
being a fixed disk dedicated to the system, and drive 1 a removable
cartridge whose contents are left to the discretion of its owner.

The remote file system is the one supported on the host.

The local file system supports hierarchical directories, the root
directory being denoted by °/'. There is always a current (local)
working directory, displayed by the pwd command and altered by
means of the cd command.

A file name is a null-terminated string of ascii characters. Those
built-in commands and monitor system calls which manipulate files
may need the name(s) of one or more input or output files. These
files may, in turn, be indifferently located on the local devices or
the host.

2.5-Redirection

Local commands support a limited form of redirection of
standard input and output.

2.6- 1 man

.. In much the same way as the Unix shell, these commands fall
into the following categories:

- built-in, executed by code wired in the monitor,

- command files containing one or more monitor
commands,

- executable code files containing code produced by
ccvme or €sco.

Command files and executable code, though executed locally,
can reside on the host.

The built-in commands implemented to date are:

™ transparent mode

cat print a file on the standard output

cd change local working directory

chin change label of mounted disk

compress compactify a fragmented local disk

cp copy a file onto a new file

creat create a new file

df display file system map

dm display memory map

echo echo the arguments of the command

ed edit a text file

exit exit from the monitor to the VME DSSEBUG
monitor.

fsck check local file system consistency

help list all commands or help for a specific command

Is list one or more files on currently mounted local
device

mkdir create a subdirectory in the current working directory

mkfs make a new local file system

mount mount a local device or show which is currently
mounted

mv move a file

passwd change the password of a local disk

pwd display absolute path to current working director

m remove one or more files or directories

setsys install a bootable system

type enter the contents of standard input into the file

2.7-Remote Commands

. Remote commands are a subset of Unix commands, that are
shipped by the monitor to the server, which forks a shell to execute
them. They currently include commands such as :

cd, date, echo, Is, mv, printenv, ps, pwd, rm, size, vi.

Note that the local versions of cp and mv can also act on remote
files (but since they execute locally, they will be slower than the
corresponding remote commands).

285 Calls and User Librairi

Most of the system calls available in a user program running on
the VME are Unix-like, which allows for using (most of) the C
library functions (e.g., stream-oriented input-output) in a user
program. They allow for manipulation of local and remote files, as
well as other local monitor services, and currently include:

37

close close a file

free return a block of memory to free storage

Iseek move read/write pointer (also:to find size of a file)
malioc allocate a contiguous block of free memory

open open (and create) a file for reading and/or writing.
popen initiate a remote process on the host

read read from an open file

unlink remove a file

write write into an open file

The open call has been extended to allow for the specification of
file search strategies on the local disks and on the host.

-4x
F

EOR THE 4X SYSTEM
(R. Rowe, O. Koechlin)

4xy consists of a set of language extensions to the C
programming language and a run-time environment. The compiler
is designed to support the description of functions, called
Actions, which will be executed in real-time and regarded as
running in parallel, and to facilitate the interface of these Actions
with the 4X patch language and hardware peripheral environment.
The source code written by the user is treated successively by the
C pre-processor; the 4xy compiler (written with yacc), which
recognizes and treats elements of the language and passes C
constructs untouched; the C pre-processor for a second time; and
finally the C cross-compiler for the MC68000.

4xy is a compiler of control programs for the 4X real-time
system, developed at IRCAM by G. di Giugno and his team. The
term "control program” is meant to lay emphasis on the fact that

- 4xy programs run in real-time, in fact only in real-time, and pilot

the 4X during the execution of a given application. Such
applications have to date included programs for sampling live
sounds, real-time FM models, test programs for the 4X and its
environment, and musical compositions. This last area is one of
special interest for the compiler, since it functions as the "score
language” counterpart to the 4X "patch language™. Many of the
constructs in 4xy are meant to simplify the coding of
compositional algorithms, and to enhance the ability of such
algorithms to be controlled in a real-time environment.

Actions in 4xy are C functions which are executed following the
occurence of one of a set of events. These events include :

- timer interrupts from the 4X

- peripheral interrupts

- execution calls from other Actions or the main program

- the positive evaluation of a boolean expression
Actions cannot be passed arguments and do not return a value.
They are, however, organized in a tree structure which permits
children of a given node to access certain information about their
parent. The user determines the construction of the tree by
selecting the point of creation of each Action. Actions created
from within other Actions are children of the latter. Actions
created in main are children of the tree's root. A single Action can
occupy several different positions in the tree : for instance, as a
child of the root, child of another Action, and grandchild of still
another.

Any Action can be created with several distinct instances. When
this happens, the copies of that Action can be regarded as running
in parallel. Several language facilities are available to the user to
control separate instances of an Action and the communication
between a parent and children, which may be multiple instances
of a different Action.

ICMC 86 Proceedings

To obtain control over an individual instance, the user has access
to the keyword variable Instance. The scope of this variable is the
entire Action. Instance represents the number of the instance
currently being executed : instances are numbered from O to the
total number of instances - 1. Further, one can access the instance
numbers of nodes higher up in the tree structure with the syntax
Instance A n, where n indicates how far back up the tree one
wants to go. Therefore Instance A 1 refers to the parent's
instance number, Instance ** 2 to the grandparent's, and so on.

It is also possible to reference the number of executions an Action
has undergone since its creation through the keyword variable
Count. Count is incremented each execution at the beginning of
the Action, and will equal O the first time the Action is run, 1 the
second time, etc. Count values for higher tree nodes can be
accessed through the same convention as that described for
Instance : Count A* 1, Count * 2, and so on. Counts are distinct
for each instance of any Action, and can be assigned a new value
by the user. This is useful when one is using Count to index an
array, for instance. Count is reset to zero whenever an Action is
created, which means that if an Action is created when it is
already active, the only effect will be to reset its Count to zero.

Actions are activated, killed, and rescheduled using a set of
conditions recognized by the language. For instance, the define an
Action one makes the declaration

Action <name> (<begin condition> <,end condition>)
and to reschedule an Action one includes in its body a statement
Next (<condition>)

These conditions refer to various devices and expressions in the
4X environment. The available keywords at present include :
Boolean, Force, Keyon, Keyoff, Switchkx, Switchon,
Switchon, Time, Tty, and Forever. As an example, Keyon refers
to pressing a key on a MIDI keyboard. Whenever an Action has
been scheduled or rescheduled with the Keyon keyword, that
Action will be executed whenever any key on the MIDI keyboard
is pressed. Similarly, Actions conditioned by Time will be called
when a 4X timer, set by the user in the condition specification to a
number of milliseconds, fires.

The instruction Go generates a background loop which receives
interrupts, polls virtual devices, and calls their associated Actions.
The instruction Stop can be included in any Action. When this
statement is encountered, execution of the background loop is
terminated and control returned to the instruction following Go.

The interface with the patch language is accomplished through the
mediation of a header file, generated by the patch language, which
bears the name of the patch followed by the extension ".h". This
file contains a set of #define statements which permit the
programmer to use the same symbolic names for 4X data memory
locations as those which were used in the patch language.

A wide range of scalers and reverse scalers are provided, which
allow the manipulation of values expressed in terms of decibels,
hertz, or other scales. Such values, modified in a 4xy Scale
statement, can be passed to and from the 4X such that both the
human and the machine understand them.

Other facilities support the description of breakpoint envelopes,
pitch, and duration sets which can include real-time calculations.
A full range of library routines and utilities complete the 4xy
system.

ICMC 86 Proceedings

4xy, which was begun in March of 1985, is now used for most
of the applications developed for the 4X machine, ranging from
test programs to musical compositions. The greatest virtue of the
compiler has proven to be its ease of adaptation : since it is an
extension of C, features which do not exist in the language can be
coded directly and added to the language itself once the generality
and function of a given technique have been thoroughly tested.
This method insures both that 4xy itself will continue to grow,
and that efforts of development will not be needlessly duplicated.

(M. Puckette)

MAX (named in gratitude to Max Mathews) is an implementation of
a set of real-time process scheduling and communication ideas
aimed at making it possible to design elements of a system which
can be combined quickly and without changing code. Many such
elements are standardly available, such as processes which read
potentiometer values and update 4X synthesis parameters, or which
wait for a specified event and carry out an associated action. MAX
greatly speeds the development of new 4X applications, making it
possible to use a 4X patch without writing a dedicated control
program for it. When actions are desired which are outside the
score of the standard MAX objects, it is easy to add new objects
and interface them to the existing ones.

Communications between the objects, which in MAX are called
control processes (CPs), is done by "letters”, which are messages
with associated times. The letter is sent to the MAX scheduler,
which sends it to the destination CP at the letter's “start time." If
more than one letter's start times have arrived, the scheduler
delivers the letter with the earliest “deadline.”

Letters are formatted as lists of symbols, so that it is easy to type in
a letter to send to a control process, or to print the contents of any
letter.

The lack of data structure implies the greatest possible flexibility in

configuring CPs.

‘Touse MAX, the user specifies the set of CPs he desires in
a configuration file which MAX reads at run time. A simple such
file might contain: .

4x --
tty ttyx --

which allocates one CPs named "4x" which writes, reads, and
graphs 4x registers and function tables and another named “tty"
which prompts for messages typed on the teletype and sends them
as letters to other CPs. This configuration as it stands is enough to
do most patch debugging. For more immediate control, MAX
makes pots and switches available; thus, for example, the
configuration

4x --

tty ttyx --

switch ks0 4x w amp O --
pot kpO 4x freq 0 0x1000 --

adds to th first configuration a momentary switch whose action is to
send"4x" a letter, "w amp 0", which writes a value to a 4X register,
and a potentiometer which controls the value of another register.
Some twenty standard CPs perfoorm functions such as I/O, basic
event detection, timed sequencing of events (which may themselves
be letters and hence may do a wide range of things.) Since all
instructions to a CP are in the form of letters, any event can be
given any desired action. This may be applied self-referentially; the
"action" specified might in turn associate another event with another
action.

372

H ; i Two versions of the interface described have been developed.
Ahhg-" gh MAX Is written under dxy, it s ot currently casy to first, implemented on a Macintosh, permits programming and tes'
com! ntlc Cfl’(s in MAX with Actions in 4xy; this is the subject of a palch in real-time. The Mac handles lexical, syntactic, and sema:
current work. - 1cal, » an
s P “ " analysis, and sends commands to an interpreter running on
X,, i:r ca‘l)ll anw]r}:’ngat oadda“dxy h(;P to %Ax anc}.a Max .]:;yword VM%—GSOOO which is composed of a macro-language of commar
asa s{xbs& § 2 user to write his own 4xy application with MAX ; micro-code optimizer, a loader, and several utilities. The secc
I sdion, o implemenationof MAX sl or 1987, 127500, 5% Sevelopment an wes, & SUN 120,
S L c)c used but the letters will be replac o f d testing i ~time: th il only all
i i i eyt gramming and testing in real-time; the second will only a
by lists containing the arguments of a message; the “delivery” of the fasting of compiled patches, but these patches will have undergor.
letter will be done by a "send” of the message at the appropriate

time. better optimization.
"

mkgra

- A E
graphic
files

4
(P. Potacsek)

The increasing power of digital signal processors and the
multiplication of real-time controls (keyboards, sequencers, - resdx
customized controls, etc.) has led to the realization of workstations graphic Idpat patcf_:
which are more and more complex. Usually, different elements have editor Idfun comprer
specific programming demands even though an efficient dios
man-machine interface should use a more unified approach to dsdm
different components of the system. In the case of the 4X musical dixy
workstation, programming the system can be separated into two :
parts : first, the definition of the instrument or signal processor figure 1
algorithm with- the "patch” language, and the second being the +

control of execution in real-time, using peripheral inputs, through a

“control” language.

freq

One of the most delicate points of such a system, for a novice user,
is programming and debugging an algorithm composed of signal Y
processing techniques (scaling, sampling, filtering, and the like)
which a machine such as the 4X requires. cwd fun ——= flreq
memory
To assist with this problem, we have designed and implemented a out
mouse-driven, bitmap graphic interface for use in programming the

4X. The interface consists of an iconic command language, a graphic
editor, and a graphic debugger. l out m

— | freq

cwd
The iconic command language makes a link between the graphic out

world and the ASCII, text world. It makes conversions between figure 2a
bitmap files and “patch” language files in both directions. It also
allows the user to command the 4X and load binary files. Figure 1
shows the different commands available in this language.

osclllator treq

cwd
out

The graphic editor permits the description, creation, and symbolic
manipulation of signal processing modules, which we will
henceforth refer to as "functions”, in an iconic form. The icons figure 2¢
represent language primitives (addition, subtraction, multiplication, figure 2b

etc.), or other functions already defined. The user arranges icons on

the screen and makes connections by drawing lines between them.

These connections symbolize the flow of data between functions.

The editor supports the hierarchical management of its function

library. Figure 2a shows the description of an oscillator by means of

language primitives, figure 2b shows the creation of an oscillator

function, and figure 2c shows the description of an oscillator bank +
using the defined function.

freq

The graphic debugger is primarily a tool for interactive testing and
debugging with the 4X. When a patch has been compiled and loaded
into the 4X, we can examine the patch graphically, traverse its

hierarchy, (i.e. obtain the description of each icon in the patch), and <

at any point listen to, visualize, or reinitialize any of its data using cwd fun —

graphic sliders (figure 3). memory

In conclusion, we have developed a set of graphic tools which . ﬂ‘
provide an clegant solution to the problems outlined in the
introduction. The realization in real-time was made possible by the out

development of software distributed between the VME-68000 and a
host computer.

figure 3

373 ICMC 86 Proceedings

