An expedient general synthesis of pyrrolo[3,2-e]indazoles: domino Sonogashira/Cacchi coupling-heteroannulation reactions

Sujoy K. Barik, a Moumita Rakshit, b Gandhi K. Kar, b and Manas Chakrabarty* a

a Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata-700 009, India
b Department of Chemistry, Presidency University, 86/1 College Street, Kolkata-700 073, India
E-mail: chakmanas09@gmail.com

DOI: http://dx.doi.org/10.3998/ark.5550190.p008.596

Abstract
A one-pot Sonogashira coupling-heteroannulation of 4-iodo-1-phenylsulfonyl-5-trifluoroacetamidoindazole with terminal acetylenes using bis(triphenylphosphine)palladium(II) dichloride as the catalyst, cuprous iodide as the co-catalyst and triethylamine as the base in DMF furnished, after N(3)-deprotection, 7-H/substituted 3,6-dihydropyrrolo[3,2-e]indazoles in high yields. This is the first general synthesis of pyrrolo[3,2-e]indazoles. Uncatalyzed hydrodesilylation was observed during reaction with trimethylsilylacetylene, leading to the 7-unsubstituted parent pyrrolo[3,2-e]indazole.

Keywords: Pyrrolo[3,2-e]indazoles, Sonogashira coupling/5-endo-dig cyclisation, palladium(II) catalyst, domino reactions

Introduction

The indole ring constitutes the structural core of a host of bioactive compounds of natural and synthetic origins.1,2 More than 10,000 bioactive indoles are known, of which over 200 are either used as drugs or are in clinical trials.3 Substituted indazoles too are of considerable pharmaceutical importance because of their therapeutic potential and use,4 amongst which benzydamine is a notable anti-inflammatory agent.5,6 In continuation of our ongoing interest in the development of general synthetic routes to potentially bioactive condensed nitrogen heterocycles,7-14 we recently focused our attention on a relatively less studied class of heterocycles which incorporate both the indole and the indazole nuclei, viz. pyrazoloindoles which may also be regarded as pyrroloindazoles. A report on the study of indazole-containing polycyclic compounds in search of antitumor agents15 strengthened our motivation.

The extant literature on the synthesis and bioactivity of pyrroloindazoles revealed that eight isomeric classes of pyrroloindazoles have so far been synthesised.16-33 Of these, only the [2,3-g]-
isomers18-27 and the [3,2-\textit{e}]-isomers22,24,25 display various biological activities. Thus, the [2,3-\textit{g}]-isomers 1-4 and the [3,2-\textit{e}]-pyrroloindazole 5 were bioactive. While 1 showed analgesic and antiinflammatory activity,18 2 showed NMDA (\textit{N}-methyl D-aspartate)-receptor antagonistic property with potential for the treatment of neuropathic pain,22 3 and 4 displayed inhibition of sGC (soluble guanylate cyclase) with potential for treating hypertension23 whereas 5 proved to be an antagonist of NMDA-receptor.22

\begin{equation}
\begin{array}{c}
1. R = \text{alkyl}; R' = H; R'' = \text{Me} \\
2. R = R' = H; R'' = \text{CO} \quad \text{EtOH}_2 C = N \\
3. R = \text{Me} \\
4. R = \text{Ph} \\
5
\end{array}
\end{equation}

Among these two classes of pyrroloindazoles, only the [2,3-\textit{g}]-types have already been subjected to rather thorough synthetic investigations.18-27 But the [3,2-\textit{e}]-types were synthesized only twice, neither of which was a general route.

In the first synthesis of pyrrolo[3,2-\textit{e}]indazoles, only one member, \textit{viz}. the 5-carbethoxy derivative was prepared from 5-aminindazole using Fischer/Japp-Klingemann procedure. The derived 4-benzylpiperidinylcarboxamide proved to be a good antagonist of NMDA-receptor.22 In the second synthesis,24,25 two substrates, \textit{viz}. 6-H- and 6-bromo-4,5-indolynes, generated \textit{in situ}, were separately treated with ethyl diazoacetate when a mixture of two isomeric pyrroloindazoles, \textit{viz}. the [3,2-\textit{e}]-type and the [2,3-\textit{g}]-type were formed in each case. Thus, 4-H-1-carbethoxypyrrolo[3,2-\textit{e}]indazole and 8-H-1-carbethoxypyrrolo[2,3-\textit{g}]indazole were formed from the 6-H-indolyne, whereas 4-bromo-1-carbethoxypyrrolo[3,2-\textit{e}]indazole and 8-bromo-1-carbethoxypyrrolo[2,3-\textit{g}]indazole were formed from the 6-bromoindolyne.

The reported bioactivity, hence the bioactive potential of pyrrolo[3,2-\textit{e}]indazoles and particularly the absence of a general synthetic route to this particular isomeric class called for the development of a general synthesis of pyrrolo[3,2-\textit{e}]indazoles, which we have now accomplished and is reported herein.

Several classical routes to the synthesis of indoles are known.34,35 Indazoles too have been the subject of synthetic efforts during the past decades.36 Our plan was to utilize one of the recently developed palladium-catalyzed synthetic routes to indoles37,38 because of the mild reaction conditions involved, tolerance of a wide variety of functional groups (thereby avoiding the use of protecting groups), high regioselectivities and high yields.

The aminopalladation/reductive elimination domino reaction of alkynes containing a proximate nitrogen nucleophile, first observed by Yamanaka and subsequently by Cacchi,39 has
proved to be very useful for the formation of a pyrrole ring incorporated into an indole nucleus. To be precise, Cacchi’s novel approach to 2,3-disubstituted indoles through a palladium-catalyzed cyclisation of ortho-alkynyl-trifluoroacetanilides with aryl, heteroaryl and alkenyl halides, specially iodides, or triflates was of interest to us. Later, Flynn modified conditions to develop a one-pot, two-step synthesis of only one 2,3-disubstituted indole using bis(triphenyl-phosphine)palladium(II) dichloride as the catalyst.

Results and Discussion

Our plan was to utilize the Sonogashira-Hagihara protocol (more often simply called Sonogashira reaction) /Cacchi procedure for the construction of the pyrrole ring on the indazole framework. Our retrosynthetic analysis of the envisaged title molecules, shown in Scheme 1, involved 5-amino-N(1)-phenylsulfonylindazole as the starting material and it was prepared from 5-nitroindazole.

Accordingly, the desired starting amine was prepared from commercially available indazole by successive N(1)-phenylsulfonylation (PTC-mediated) and reduction (hydrazine hydrate and palladized charcoal) of the resulting protected nitroindazole. It was then iodinated exclusively at C-4 by N-iodosuccinimide (NIS) to efficiently furnish. The site of iodination received support from the appearance of 1H NMR signals at δ 7.09 and ca. 7.84 ppm (1H, d each J 9 Hz) in the 1H NMR spectrum of 9, which corresponded to H-6 and H-7. The amino-iodoindazole was trifluoroacetylated to furnish the Sonogashira/Cacchi substrate, ortho-iodo-trifluoroacetamidoindazole in very good yield (Scheme 2).
Reaction conditions and yields: (i) PhSO₂Cl, NaOH, n-Bu₄N⁺HSO₄⁻, THF, rt, 1 h; (7): 84%; (ii) NH₂NH₂, Pd/C, MeOH, reflux, 3 h; (8): 82%; (iii) NIS, CH₃CN, rt, 2 h; (9): 81%; (iv) TFAA, Et₃N, THF, 0 °C, 2 h; (10): 83%.

Scheme 2. Preparation of the key precursor 10.

The reaction of the Sonogashira/Cacchi substrate 10 was first tried with TMSA 11a since TMSAs can be hydrodesilylated using a fluoride source, mostly TBAF, or an inorganic base, usually aq. KOH-MeOH. We used bis(triphenylphosphine)palladium(II) dichloride [Pd(Ph₃P)₂Cl₂] (10 mol %) as the catalyst in our experiments. Thus, 10 was treated with 11a (1.4 equiv) and Pd(Ph₃P)₂Cl₂ (10 mol %) in DMF in the presence cuprous iodide (10 mol %) as the co-catalyst and Et₃N (10 equiv) as the base and stirred at 100-110 ºC in an argon atmosphere (to avoid Hay-Glaser homocoupling of terminal acetylenes⁴⁷) until the substrate was consumed. The optimal concentrations of the catalyst, the co-catalyst and the base were determined by trial experiments which have not been described in the Experimental Section. A usual work-up of the reaction mixture, followed by purification of the crude product by column chromatography over silica gel, furnished a single product. Though expected to be the corresponding 7-TMS-pyrroloindazole, the sole product was indeed identified as 7-unsubstituted 3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole 12a by combined spectroscopic (IR, ¹H and ¹³C NMR, MS) and elemental analyses. The presence of two ¹H NMR signals at δ 7.71 and 7.87 ppm (1H, each d, J 9 Hz), corresponding to H-4 and H-5 of the pyrrolo[3,2-e]indazole nucleus, lent support to its type of isomer. It thus transpired that the tandem Sonogashira/Cacchi coupling-heteroannulation as well as hydrodesilylation had occurred in one pot.

The observed cleavage of the TMS group occurring under the tandem Sonogashira-Hagihiara/Cacchi cross-coupling-heteroannulation reactions requires explanation since we did not use any hydrodesilylating agent in our experiment. We believe, direct palladium-copper-catalyzed coupling of 10 with 11a in a so-called “sila”-Sonogashira reaction⁴⁸ led to the elimination of trimethylsilyl iodide with the formation of ortho-ethynyl-trifluoroacetamidoindazole. It was immediately followed by 5-endo-dig cyclisation to form 12a.

The occurrence of two reactions in tandem and the high yield of the product encouraged us to check the generality of the reaction. Hence, 10 was separately treated with seven other terminal acetylenes 11b-h under the aforesaid conditions. Gratifyingly, the respective 7-substituted 3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazoles 12b-h were isolated as the sole products in
82-94% yields in 5-8 h (Table 1). In the 1H NMR spectra of all these products, the signals for H-4 and H-5 appeared as 1H, doublet each in the range δ 7.59-8.0 ppm showing, as expected, an ortho-coupling (J 8.5-9.5 Hz). The formation of [3,2-e]-type of pyrroloindazoles was thus confirmed. Pertinently, H-1 appeared at δ 8.6-8.9 ppm (s) in 12a-h, whereas H-8 appeared at ca. δ 6.5 ppm (s) in the 7-alkyl derivatives 12b-e and at δ 7.2-7.3 ppm (s) in the 7-aryl derivatives 12f-h.

Table 1. Synthesis of 7-H/substituted 3,6-dihydropyrrolo[3,2-e]indazoles 12a-h from terminal acetylenes using domino reactions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkyne 11</th>
<th>Product (R in str. 12)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>Mp (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me$_3$Si-C≡CH (11a)</td>
<td>12a (H)</td>
<td>10</td>
<td>83</td>
<td>204-206 (dec)</td>
</tr>
<tr>
<td>2</td>
<td>H$_3$C(CH$_2$)$_3$-C≡CH (11b)</td>
<td>12b (n-C$_4$H$_9$)</td>
<td>5</td>
<td>88</td>
<td>214-216 (dec)</td>
</tr>
<tr>
<td>3</td>
<td>H$_3$C(CH$_2$)$_4$-C≡CH (11c)</td>
<td>12c (n-C5H${11}$)</td>
<td>7</td>
<td>82</td>
<td>186-188 (dec)</td>
</tr>
<tr>
<td>4</td>
<td>H$_3$C(CH$_2$)$_5$-C≡CH (11d)</td>
<td>12d (n-C6H${13}$)</td>
<td>6</td>
<td>85</td>
<td>180-182 (dec)</td>
</tr>
<tr>
<td>5</td>
<td>NC(CH$_2$)$_3$-C≡CH (11e)</td>
<td>12e [(CH$_2$)$_3$CN]</td>
<td>6</td>
<td>94</td>
<td>258-260 (dec)</td>
</tr>
<tr>
<td>6</td>
<td>Ph-C≡CH (11f)</td>
<td>12f (Ph)</td>
<td>8</td>
<td>93</td>
<td>238-240 (dec)</td>
</tr>
<tr>
<td>7</td>
<td>p-MeC$_6$H$_4$-C≡CH (11g)</td>
<td>12g (C$_6$H$_4$Me-p)</td>
<td>7</td>
<td>88</td>
<td>222-224 (dec)</td>
</tr>
<tr>
<td>8</td>
<td>p-MeOC$_6$H$_4$-C≡CH (11h)</td>
<td>12h (C$_6$H$_4$OMe-p)</td>
<td>8</td>
<td>87</td>
<td>218-220 (dec)</td>
</tr>
</tbody>
</table>

For N(3)-deprotection, each of 12a-h was refluxed with aqueous methanolic potassium carbonate for 2 h, which generated the parent 7H/substituted 3,6-dihydropyrrolo[3,2-e]indazoles (13a-h) in 85-91% yields (Table 2). As expected, H-1 showed an upfield shift (to δ 8.1-8.3 ppm, s) in 13a-h, whereas there was not much effect on the chemical shifts of H-8.
Table 2. Synthesis of 7-substituted 3,6-dihydropyrrolo[3,2-e]indazoles via \(N\)-deprotection of \(N\)-phenylsulfonylpyrroloindazoles

<table>
<thead>
<tr>
<th>Entry</th>
<th>3-Phenylsulfonylpyrroloindazole</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Mp (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12a</td>
<td>13a</td>
<td>87</td>
<td>162-164 (dec)</td>
</tr>
<tr>
<td>2</td>
<td>12b</td>
<td>13b</td>
<td>86</td>
<td>134-136 (dec)</td>
</tr>
<tr>
<td>3</td>
<td>12c</td>
<td>13c</td>
<td>85</td>
<td>168-170</td>
</tr>
<tr>
<td>4</td>
<td>12d</td>
<td>13d</td>
<td>88</td>
<td>134-136</td>
</tr>
<tr>
<td>5</td>
<td>12e</td>
<td>13e</td>
<td>90</td>
<td>130-132</td>
</tr>
<tr>
<td>6</td>
<td>12f</td>
<td>13f</td>
<td>87</td>
<td>246-248</td>
</tr>
</tbody>
</table>

\[
\text{K}_2\text{CO}_3 (4 \text{ equiv}) \\
\text{MeOH-H}_2\text{O, reflux, 2 h; 85-91%}
\]

R= H, alkyl, aryl
Conclusions

An efficient, general synthesis of 7-H/substituted 3,6-dihydropyrrolo[3,2-e]indazoles has been developed by the reaction of 4-iodo-1-phenylsulphonyl-5-trifluoroacetamidoindazole with terminal alkynes using Sonogashira/Cacchi coupling-heteroannulation reactions, followed by N(3)-deprotection. To the best of our knowledge, this is the first general synthesis of this class of compounds, that too involving domino reactions. The overall procedure is simple, the yields are consistently high and both the indolic and the indazolic nitrogens are amenable to derivatization, thereby rendering our method even more useful. Furthermore, our work opens up the study of the reactions of 10 with internal alkynes, which is likely to unveil interesting results on 7,8-disubstituted pyrroloindazoles.

Pertinently, after the completion of our work, a report was published only a few months ago on a convenient synthesis of pyrrolo[3,4-g]indazoles by the annelation of the pyrazole ring on the isoindole moiety, and four members of the synthesized pyrroloindazoles showed modest antitumor activity against a host of human tumor cell lines.49

Experimental Section

General. All melting points (in Celsius) were recorded on a Toshniwal apparatus. The IR spectra were recorded on KBr pellets using a Perkin-Elmer-782 spectrophotometer, the 1H (500 MHz) and 13C (125 MHz) NMR spectra (PND, DEPT 135) (except in one case) on a Bruker DRX 500 NMR spectrometer unless otherwise mentioned, the LR EI-MS on a JEOL JMSAX505HA and HR ESI-MS(+) on a Waters Qtof Micro YA263 mass spectrometer. All elemental analyses were carried out on Perkin Elmer 2400 Series II C, H, N Analyzer. Analytical TLCs were carried out on silica gel G (Merck, India) plates. PE refers to petroleum ether, bp 60–80 °C. Column chromatography (CC) was performed using silica gel (100-200 mesh). DMF was dried, distilled
and stored over molecular sieves (4 Å). 5-Nitroindazole, Pd/C and all terminal alkynes were procured from Sigma-Aldrich. Phenylsulfonyl chloride, trifluoroacetic anhydride and hydrazine hydrate were purchased from Spectrochem, India. N-Iodosuccinimide (NIS) was purchased from Alfa-Aesar.

Synthesis of 5-amino-4-iodo-1-phenylsulfonylindazole (9). To a solution of 5-amino-1-phenylsulfonylindazole (8)\(^{11}\) (2.73 g, 10 mmol) in dry MeCN (60 mL) at rt was gradually added NIS (2.70 g, 12 mmol) and the solution stirred until (2 h) the reaction was complete. The solution was poured into 10% aqueous Na\(_2\)S\(_2\)O\(_3\) and MeCN distilled off. The solution was extracted with EtOAc (3 × 50 mL), the organic layer separated and washed with H\(_2\)O, dried (Na\(_2\)SO\(_4\)) and the solvent removed under vacuum. The resulting dark colored residue was purified by CC (10% EtOAc in PE) to furnish 9 as a colorless solid, yield 81%, 3.23 g, mp 182-184 °C; IR (\(\nu\) max, cm\(^{-1}\)) : 3468, 3375, 1614, 1505, 1366, 1176, 1058, 817, 725. \(^1\)H NMR (CDCl\(_3\)) : \(\delta\)H 5.46 (2H, s, NH\(_2\)), 7.09 (1H, d, \(J\) 9 Hz), 7.51 (2H, td, \(J\) 17.5 Hz, \(J\) 2 1.5 Hz), 7.67 (1H, tt, \(J\) 7.5 Hz, \(J\) 2 1 Hz), 7.84 (1H, d, \(J\) 9 Hz), 7.82-7.85 (2H, m), 8.06 (1H, d, \(J\) 1 Hz). \(^{13}\)C NMR (CDCl\(_3\)) : \(\delta\)C 113.8, 119.3, 127.4, 130.2, 135.3, 144.7 (all CH arom), 69.8, 131.4, 133.3, 136.6, 147.2 (all C arom). MS (EI), m/z (%) = 399 (100) (M\(^+\)), 258 (45) (M-SO\(_2\)Ph). Anal. Calcd for C\(_{13}\)H\(_{10}\)IN\(_3\)O\(_2\)S: C, 39.10; H, 2.51; N, 10.53%. Found: C, 39.15; H, 2.50; N, 10.56%.

Synthesis of 4-iodo-1-phenylsulfonyl-5-(trifluoroacetamido)indazole (10). To a solution of 9 (3.98 g, 10 mmol) in dry THF (75 mL) was added Et\(_3\)N (2 mL) and (CF\(_3\)CO)\(_2\)O (1.95 mL) at 0 °C, and the reaction mixture was stirred until (2 h) the reaction was complete. The solution was diluted with H\(_2\)O (40 mL), THF distilled off and the aqueous phase extracted with EtOAc (3 × 50 mL). The combined solvent extracts were washed with H\(_2\)O, dried (Na\(_2\)SO\(_4\)) and the solvent removed to furnish a crude product which was purified by CC (10% EtOAc/PE) to furnish 10 as a brownish solid, yield 83%, 4.11 g, mp 164-166 °C; IR (\(\nu\) max, cm\(^{-1}\)) : 3320, 1727, 1542, 1369, 1282, 1171, 1156, 1088, 1077, 810, 725. \(^1\)H NMR (CDCl\(_3\)) : \(\delta\)H 7.50 (2H, td, \(J\) 1 7.5 Hz, \(J\) 2 1.5 Hz), 7.62 (1H, tt, \(J\) 7.5 Hz, \(J\) 2 1.5 Hz), 8.00 (2H, td, \(J\) 1 8 Hz, \(J\) 2 1.5 Hz), 8.06 (1H, s), 8.21 (1H, d, \(J\) 9 Hz), 8.24 (1H, d, \(J\) 9 Hz), 8.30 (1H, br s). \(^{13}\)C NMR (CDCl\(_3\)) : \(\delta\)C 113.9, 124.3, 127.7, 129.4, 130.2, 135.3, 144.7 (all CH arom), 82.8, 130.5, 132.8, 137.0, 137.8 (all C arom), 155.1 (NHCOF\(_3\)). MS (ESI) calcd for C\(_{15}\)H\(_9\)IN\(_3\)O\(_3\)F\(_3\)S (M\(^+\)) 494.9361; found 494.9340. MS (EI), m/z (%) = 495 (40) (M\(^+\)), 368 (100) (M–I). Anal. Calcd for C\(_{15}\)H\(_9\)IN\(_3\)O\(_3\)F\(_3\)S: C, 39.10; H, 2.51; N, 8.48%. Found: C, 36.41; H, 1.80; N, 8.51%.

General Procedure for the synthesis of 7-H/substituted 3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazoles (12a-h). A mixture of 10 (0.25 g, 0.5 mmol), the alkyne 11a-h (0.7 mmol), Pd(Ph\(_3\)P)\(_2\)Cl\(_2\) (35 mg; 10 mol %), Cul (19 mg; 10 mol %) and Et\(_3\)N (0.7 mL; 5 mmol) in DMF (3 mL) was stirred at 100 °C in argon atmosphere until (5-10 h) the reaction was complete (the reaction darkened in color). It was cooled to rt, filtered through a bed of Celite\(^\text{®}\) and washed with EtOAc (3 × 15 mL). The combined organic layer was washed with brine and then H\(_2\)O,
dried (Na₂SO₄) and the solvent distilled off. The residue obtained was purified by CC and crystallized from EtOAc/PE mixture.

3-Phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole (12a). Pale yellow solid, yield 83%, 0.123 g, mp 204-206 °C (dec); IR (νmax, cm⁻¹): 3307, 1584, 1480, 1447, 1375, 1185, 1117, 877, 727, 682. ¹H NMR (DMSO-d₆): δH 6.75 (1H, d, J 2 Hz), 7.50 (2H, dd, J₁ 7.5 Hz, J₂ 2 Hz), 7.53 (1H, d, J 1 Hz), 7.62 (1H, t, J 7.5 Hz), 7.71 (1H, d, J 9 Hz), 7.85 (2H, dd, J₁ 7.5 Hz, J₂ 1.5 Hz), 7.87 (1H, d, J 9 Hz), 8.69 (1H, s), 11.65 (1H, s).

13C NMR (DMSO-d₆): δC 100.7, 106.1, 115.6, 127.0, 127.2, 130.1, 135.0, 141.9 (all CH arom), 118.8, 119.0, 132.9, 136.6, 137.0 (all C arom). MS (ESI) calcd for C₁₅H₁₁N₃O₂SNa (M+Na) 320.0470; found: 320.0471.

7-n-Butyl-3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole (12b). Colorless solid, yield 88%, 0.155 g, mp 214-216 °C (dec); IR (νmax, cm⁻¹): 3359, 1589, 1370, 1186, 726. ¹H NMR (DMSO-d₆): δH 0.88 (3H, t, J 7.5 Hz), 1.31 (2H, sextet, J 7.5 Hz), 1.65 (2H, quintet, J 7.5 Hz), 2.74 (2H, t, J 7.5 Hz), 6.47 (1H, s), 7.52 (2H, t, J 7.5 Hz), 7.59 (1H, d, J 9 Hz), 7.63 (1H, t, J 7.5 Hz), 7.78 (1H, d, J 9 Hz), 7.84 (2H, d, J 8 Hz), 8.64 (1H, s), 11.48 (1H, s).

13C NMR (DMSO-d₆): δC 14.1 (CH₃), 22.2, 27.7, 31.4 (all CH ₂), 98.1, 104.8, 114.8, 127.2, 130.0, 135.0, 142.0 (all CH arom), 118.3, 119.7, 132.7, 136.5, 137.0, 142.4 (all C arom). MS (EI) m/z (%) 353 (100) (M⁺), 311 (80) (M-C₃H₆), 310 (72) (M-C₃H₇), 212 (40) (M-SO₂Ph). Anal. Calcd for C₁₉H₁₉N₃O₂S: C, 64.57; H, 5.42; N, 11.89%. Found: C, 64.52; H, 5.44; N, 11.88%.

7-n-Pentyl-3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole (12c). Colorless solid, yield 82%, 0.151 g, mp 186-188 °C (dec); IR (νmax, cm⁻¹): 3338, 1584, 1523, 1451, 1369, 1184, 1118, 808, 727. ¹H NMR (CDCl₃): δH 0.90 (3H, t, J 7.0 Hz), 1.32-1.40 (4H, m), 1.70 (2H, quintet, J 7 Hz), 2.83 (2H, t, J 7.5 Hz), 6.47 (1H, s), 7.41 (2H, t, J 8 Hz), 7.50 (1H, d, J 9 Hz), 7.52 (1H, t, J 7.5 Hz), 7.96 (2H, d, J 8.5 Hz), 8.03 (1H, d, J 9 Hz), 8.72 (1H, br s), 8.98 (1H, s).

13C NMR (CDCl₃): δC 13.9 (CH₃), 22.4, 28.5, 28.9, 31.3 (all CH ₂), 98.5, 107.0, 113.6, 127.3, 129.1, 133.9, 138.3 (all CH arom), 105.9, 113.5, 129.0, 133.8, 140.5, 141.6 (all C arom). MS (ESI) calcd for C₂₀H₂₁N₃O₂SNa (M+Na) 390.1252; found 390.1198. Anal. Calcd for C₂₀H₂₁N₃O₂S: C, 65.40; H, 5.72; N, 11.44%. Found: C, 65.45; H, 5.44; N, 11.46%.

7-n-Hexyl-3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole (12d). Colorless solid, yield 85%, 0.162 g, mp 180-182 °C (dec); IR (νmax, cm⁻¹): 3319, 1583, 1375, 1189, 1074, 726. ¹H NMR (DMSO-d₆): δH 0.80 (3H, t, J 7.0 Hz), 1.24 (6H, m), 1.70 (2H, quintet, J 7.5 Hz), 2.83 (2H, t, J 7.5 Hz), 6.47 (1H, s), 7.41 (2H, t, J 8 Hz), 7.50 (1H, d, J 9 Hz), 7.52 (1H, t, J 7.5 Hz), 7.96 (2H, d, J 8.5 Hz), 8.03 (1H, d, J 9 Hz), 8.72 (1H, br s), 8.98 (1H, s).

13C NMR (DMSO-d₆): δC 14.3 (CH₃), 22.4, 28.1, 28.5, 31.4 (all CH₂), 98.0, 104.8, 114.8, 127.3, 130.1, 133.5, 138.3 (all CH arom), 105.9, 113.5, 129.0, 133.8, 140.5, 141.6 (all C arom). MS (ESI) calcd for C₂₁H₂₄N₃O₂S (M+H) 382.1589; found: 382.1592. Anal. Calcd for C₂₁H₂₃N₃O₂S: C, 66.14; H, 6.04; N, 11.02%. Found: C, 66.18; H, 6.07; N, 11.07%.

7-(3-Cyanopropyl)-3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole (12e). Colorless solid, yield 94%, 0.171 g, mp 258-260 °C (dec); IR (νmax, cm⁻¹): 3345, 2241, 1588, 1538, 1445, 1366, 1188, 1105, 728, 689. ¹H NMR (DMSO-d₆): δH 1.96 (2H, quintet, J 7 Hz), 2.51 (2H, t, J 7.5 Hz), 2.85 (2H, t, J 7.5 Hz), 6.52 (1H, s), 7.51 (2H, t, J 8 Hz), 7.60 (1H, d, J 8.5 Hz), 7.62
(1H, t, J 8 Hz), 7.79 (1H, d, J 9 Hz), 7.83 (2H, t, J 8 Hz), 8.64 (1H, s), 11.58 (1H, s). 13C NMR (DMSO-d_6): δC 16.2, 25.0, 27.0 (all CH$_2$), 98.7, 105.2, 114.9, 127.2, 130.0, 132.9, 135.0 (all CH$_{arom}$), 118.4, 119.6, 120.8, 136.5, 137.0, 140.3, 142.0 (CN + rest C$_{arom}$). MS (ESI) calced for C$_{19}$H$_{16}$N$_4$O$_2$SNa (M+Na) 387.0892; found: 387.0854. Anal. Calcd for C$_{19}$H$_{16}$N$_4$O$_2$S: C, 62.64; H, 4.39; N, 15.38%. Found: C, 62.69; H, 4.37; N, 15.40%.

7-Phenyl-3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole (12f). Colorless solid, yield 93%, 0.174 g, mp 238-240 °C (dec); IR (ν_{max}, cm$^{-1}$): 3349, 1589, 1476, 1446, 1187, 1114, 766, 751, 726, 685. 1H NMR (DMSO-d_6): δH 7.21 (1H, s), 7.31 (1H, t, J 7.5 Hz), 7.46 (2H, t, J 7.5 Hz), 7.53 (2H, t, J 7.5 Hz), 7.64 (1H, d, J 9 Hz), 7.85 (2H, d, J 8.5 Hz), 7.87 (2H, d, J 9 Hz), 8.70 (1H, s), 12.10 (1H, s). 13C NMR (DMSO-d_6): δC 98.3, 106.7, 115.3, 125.6, 127.0, 128.3, 129.5, 130.1, 135.1, 141.8 (all CH$_{arom}$), 118.6, 120.1, 132.1, 134.1, 136.9, 137.0, 139.4 (all C$_{arom}$). MS (ESI) calced for C$_{21}$H$_{15}$N$_3$O$_2$SNa (M+Na) 396.0783; found: 396.0773. Anal. Calcd for C$_{21}$H$_{15}$N$_3$O$_2$S: C, 67.56; H, 4.02; N, 11.26%. Found: C, 67.52; H, 4.03; N, 11.29%.

7-(4-Methylphenyl)-3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole (12g). Colorless solid, yield 88%, 0.170 g, mp 222-224 °C (dec); IR (ν_{max}, cm$^{-1}$): 3379, 1589, 1498, 1474, 1449, 1367, 1182, 1087, 783, 727. 1H NMR (DMSO-d_6): δH 2.47 (3H, s), 7.32 (1H, s), 7.43 (2H, d, J 8.0 Hz), 7.70 (2H, t, J 7.5 Hz), 7.80 (1H, t, J 7.5 Hz), 7.88 (1H, d, J 9 Hz), 7.92 (2H, d, J 8 Hz), 8.05 (2H, d, J 7.5 Hz), 8.06 (1H, d, J 9.5 Hz), 8.87 (1H, s), 12.22 (1H, s). 13C NMR (DMSO-d_6): δC 21.2 (CH$_3$), 97.7, 106.3, 115.2, 125.5, 127.2, 130.0, 130.1, 135.0, 141.9 (all CH$_{arom}$), 118.8, 120.2, 129.4, 133.9, 136.9, 137.0, 137.7, 139.6 (all C$_{arom}$). MS (ESI) calced for C$_{22}$H$_{17}$N$_3$O$_2$SNa (M+Na) 410.0939; found: 410.0932. Anal. Calcd for C$_{22}$H$_{17}$N$_3$O$_2$S: C, 68.22; H, 4.39; N, 10.85%. Found: C, 68.16; H, 4.40; N, 10.89%.

7-(4-Methoxyphenyl)-3-phenylsulfonyl-3,6-dihydropyrrolo[3,2-e]indazole (12h). Colorless solid, yield 87%, 0.175 g, mp 218-220 °C; IR (ν_{max}, cm$^{-1}$): 3448, 1608, 1545, 1497, 1379, 1254, 1183, 1111, 1077, 1023, 832, 790, 730, 683. 1H NMR (DMSO-d_6): δH 3.94 (3H, s), 7.21 (2H, dd, J 8.0 Hz, J_1 1 Hz), 7.25 (1H, s), 7.70 (2H, t, J 8 Hz), 7.80 (1H, dt, J 7.5 Hz, J_2 1 Hz), 7.87 (1H, d, J 8.5 Hz), 7.96 (2H, d, J 8 Hz), 8.02-8.08 (3H, m), 8.87 (1H, s), 12.17 (1H, s). 13C NMR (DMSO-d_6): δC 55.6 (OCH$_3$), 97.1, 106.0, 114.9, 115.1, 127.0, 127.2, 130.1, 135.0, 141.9 (all CH$_{arom}$), 118.5, 120.3, 124.8, 133.9, 136.9, 137.1, 136.9, 159.5 (all C$_{arom}$). MS (ESI) calced for C$_{22}$H$_{17}$N$_3$O$_3$SNa (M+Na) 426.0889; found: 426.0889. Anal. Calcd for C$_{22}$H$_{17}$N$_3$O$_3$S: C, 65.51; H, 4.22; N, 10.42%. Found: C, 65.57; H, 4.23; N, 10.44%.

General procedure for N(3)-deprotection of 12a-h. To a solution of 12a-h (1 mmol) in MeOH (30 mL) was added an aqueous solution (10 mL) of K$_2$CO$_3$ (0.55 g; 4 mmol), and the solution was refluxed for 2 h. It was diluted with H$_2$O (40 mL), MeOH distilled off and the solution extracted with EtOAc (3×30 mL). The combined organic layer was washed with brine and then H$_2$O, dried (Na$_2$SO$_4$) and the solvent distilled off. The residue was purified by CC to furnish 13a-h. All the products were crystallised from EtOAc/PE.

3,6-Dihydropyrrolo[3,2-e]indazole (13a). Colorless solid, yield 87%, 0.137 g, mp 162-164 °C (dec); IR (ν_{max}, cm$^{-1}$): 3433, 3327, 1505, 937, 771. 1H NMR (400 MHz, CDCl$_3$): δH 6.83 (1H, d,
7-n-Butyl-3,6-dihydropyrrolo[3,2-e]indazole (13b). Colorless solid, yield 86%, 0.183 g, mp 134-136 °C (dec); IR (ν \text{max}, cm\(^{-1}\)): 3371, 3202, 3178, 1546, 1344, 938, 780. \(^1\)H NMR (CDCl\(_3\)): δ\(\text{H}\) 0.83 (3H, t, J 7.5 Hz), 1.27-1.29 (4H, m), 1.64 (2H, quintet, J 7.5 Hz), 2.72 (2H, t, J 7.5 Hz), 6.37 (1H, s), 7.23 (1H, d, J 9 Hz), 7.35 (1H, d, J 9 Hz), 8.46 (1H, s), 11.64 (1H, s), 13.04 (1H, s). \(^13\)C NMR (DMSO-\(d_6\)): δ\(\text{C}\) 14.3 (CH\(_3\)), 22.2, 28.1, 29.0, 31.1 (all CH\(_2\)), 98.1, 104.7, 112.8, 129.3 (all C\(\text{arom}\)), 115.3, 121.1, 130.4, 137.3, 139.6 (all C\(\text{arom}\)). MS (ESI) calcd for C\(_{13}\)H\(_{16}\)N\(_3\) (M+H) 214.1343; found: 214.1349. Anal. Calcd for C\(_{13}\)H\(_{15}\)N\(_3\): C, 73.21; H, 7.09; N, 19.70%. Found: C, 73.25; H, 7.10; N, 19.73%.

7-n-Pentyl-3,6-dihydropyrrolo[3,2-e]indazole (13c). Colorless solid, yield 85%, 0.195 g, mp 168-170 °C; IR (ν \text{max}, cm\(^{-1}\)): 3271, 3205, 1530, 1464, 1378, 945, 783. \(^1\)H NMR (CDCl\(_3\)): δ\(\text{H}\) 0.83 (3H, t, J 7 Hz), 1.27-1.29 (4H, m), 1.64 (2H, quintet, J 7 Hz), 7.26 (2H, t, J 7.5 Hz), 6.37 (1H, s), 7.23 (1H, d, J 9 Hz), 7.35 (1H, d, J 9 Hz), 8.46 (1H, s), 11.64 (1H, s), 13.04 (1H, s). \(^13\)C NMR (DMSO-\(d_6\)): δ\(\text{C}\) 14.3 (CH\(_3\)), 22.2, 28.1, 29.0, 31.1 (all CH\(_2\)), 98.1, 104.7, 112.8, 129.3 (all C\(\text{arom}\)), 115.3, 121.1, 130.4, 137.3, 139.6 (all C\(\text{arom}\)). MS (ESI) calcd for C\(_{14}\)H\(_{18}\)N\(_3\) (M+H) 228.1500; found: 228.1500. Anal. Calcd for C\(_{14}\)H\(_{17}\)N\(_3\): C, 74.00; H, 7.49; N, 18.5%. Found: C, 74.15; H, 7.47; N, 18.55%.

7-n-Hexyl-3,6-dihydropyrrolo[3,2-e]indazole (13d). Colorless solid, yield 88%, 0.212 g, mp 134-136 °C; IR (ν \text{max}, cm\(^{-1}\)): 3379, 3214, 1531, 1449, 1342, 1167, 1115, 1038, 943, 843, 776, 684. \(^1\)H NMR (CDCl\(_3\)): δ\(\text{H}\) 0.89 (3H, t, J 6.5 Hz), 1.27-1.36 (4H, m), 1.39 (2H, quintet, J 7 Hz), 1.70 (2H, quintet, J 7.5 Hz), 2.83 (2H, t, J 7.5 Hz), 6.54 (1H, s), 7.24 (1H, d, J 8.5 Hz), 7.34 (1H, d, J 8.5 Hz), 8.73 (1H, s), 8.83 (1H, s). \(^13\)C NMR (DMSO-\(d_6\)): δ\(\text{C}\) 14.0 (CH\(_3\)), 22.4, 28.3, 28.7, 31.4 (all CH\(_2\)), 97.8, 104.4, 112.3, 130.1 (all C\(\text{arom}\)), 115.3, 121.2, 129.8, 137.4, 139.5 (all C\(\text{arom}\)). MS (ESI) calcd for C\(_{15}\)H\(_{20}\)N\(_3\) (M+H) 242.1657; found: 242.1667. Anal. Calcd for C\(_{15}\)H\(_{19}\)N\(_3\): C, 74.69; H, 7.88; N, 17.43%. Found: C, 74.60; H, 7.85; N, 17.46%.

7-(3-Cyanopropyl)-3,6-dihydropyrrolo[3,2-e]indazole (13e). Colorless solid, yield 90%, 0.202 g, mp 130-132 °C; IR (ν \text{max}, cm\(^{-1}\)): 3381, 3330, 2251, 1626, 1600, 1551, 1437, 1327, 945, 783. \(^1\)H NMR (DMSO-\(d_6\)): δ\(\text{H}\) 2.16 (2H, t, J 7 Hz), 2.68 (2H, t, J 6.5 Hz), 3.02 (2H, t, J 6.5 Hz), 6.61 (1H, s), 7.32 (1H, d, J 8.5 Hz), 7.49 (1H, d, J 8.5 Hz), 8.24 (1H, s), 11.33 (1H, s), 13.00 (1H, s). \(^13\)C NMR (DMSO-\(d_6\)): δ\(\text{C}\) 16.3, 25.2, 27.1 (all CH\(_2\)), 98.7, 103.6, 112.5, 132.0 (all C\(\text{arom}\)), 118.7, 115.7, 120.9, 130.3, 132.0, 137.5 (CN + rest C\(\text{arom}\)). MS (ESI) calcd for C\(_{13}\)H\(_{13}\)N\(_4\) (M+H) 225.1146; found: 225.1105. Anal. Calcd for C\(_{13}\)H\(_{12}\)N\(_4\): C, 69.64; H, 5.36; N, 25.00%. Found: C, 69.60; H, 5.37; N, 24.95%.

7-Phenyl-3,6-dihydropyrrolo[3,2-e]indazole (13f). Pale yellow solid, yield 87%, 0.203 g, mp 246-248 °C; IR (ν \text{max}, cm\(^{-1}\)): 3434, 3128, 1624, 1596, 1475, 1439, 1379, 1164, 952, 788, 754, 689. \(^1\)H NMR (DMSO-\(d_6\)): δ\(\text{H}\) 7.33 (1H, s), 7.44 (1H, d, J 8 Hz), 7.60 (2H, t, J 8 Hz), 7.61 (2H, t, J 7.5 Hz), 8.03 (2H, d, J 7.5 Hz), 8.33 (1H, s), 11.91 (1H, s), 13.13 (1H, s). \(^13\)C NMR (DMSO-
d_6: δ_C 98.5, 105.3, 112.8, 125.0, 127.4, 129.4, 131.8 (all CH arom), 115.8, 119.4, 131.9, 132.9, 136.6, 137.0 (all C arom). MS (ESI) calcd for C$_{15}$H$_{11}$N$_3$ (M$^+$) 233.0953; found: 233.0900. Anal. Calcd for C$_{15}$H$_{11}$N$_3$: C, 77.25; H, 4.72; N, 18.03%. Found: C, 77.25; H, 4.70; N, 18.06%.

7-(4-Methylphenyl)-3,6-dihydropyrrolo[3,2-e]indazole (13g). Colorless solid, yield 91%, 0.225 g, mp > 250 °C; IR ($\nu_{\text{max}}, \text{cm}^{-1}$): 3429, 3179, 1624, 1544, 1375, 1348, 1164, 1082, 951, 851, 790. 1H NMR (DMSO-d_6): δ_{H} 2.49 (3H, s), 7.25 (1H, s), 7.41 (1H, d, J 9 Hz), 7.42 (2H, d, J 8 Hz), 7.59 (1H, d, J 9 Hz), 7.91 (2H, d, J 8 Hz), 8.30 (1H, s), 11.83 (1H, s), 13.09 (1H, s). 13C NMR (DMSO-d_6): δ_C 21.2 (PhC$_3$), 97.9, 105.0, 112.7, 125.0, 129.9, 131.8 (all CH arom), 115.7, 119.4, 130.2, 131.6, 136.7, 136.8, 137.0 (all C arom). MS (ESI) calcd for C$_{16}$H$_{14}$N$_3$ (M+H) 248.1187; found: 248.1107. Anal. Calcd for C$_{16}$H$_{13}$N$_3$: C, 77.73; H, 5.26; N, 17.01%. Found: C, 77.77; H, 5.28; N, 17.04%.

7-(4-Methoxyphenyl)-3,6-dihydropyrrolo[3,2-e]indazole (13h). Colorless solid, yield 86%, 0.226 g, mp > 250 °C; IR ($\nu_{\text{max}}, \text{cm}^{-1}$): 3425, 3163, 1607, 1546, 1495, 1253, 1180, 1025, 828, 785. 1H NMR (DMSO-d_6): δ_{H} 3.77 (3H, s), 7.00 (2H, d, J 8 Hz), 7.01 (1H, s), 7.20 (1H, d, J 9 Hz), 7.42 (1H, d, J 9 Hz), 7.76 (2H, d, J 8 Hz), 8.14 (1H, s), 11.62 (1H, s), 12.92 (1H, s). 13C NMR (DMSO-d_6): δ_C 55.6 (OCH$_3$), 97.3, 104.6, 112.8, 114.8, 126.4, 131.9 (all CH arom), 115.6, 119.5, 125.6, 131.4, 136.8, 158.9 (all C arom). MS (ESI) calcd for C$_{16}$H$_{14}$N$_3$O (M+H) 264.1137; found: 264.1100. Anal. Calcd for C$_{16}$H$_{13}$N$_3$O: C, 73.00; H, 4.94; N, 15.97%. Found: C, 73.05; H, 4.96; N, 15.99%.

Acknowledgements

Professor M. Chakrabarty and Dr. Sujay K. Barik thank the CSIR, Govt. of India for the grant (to MC) of an Emeritus Scientist Project (Sanction No. 21(824)/10/EMR-II, dated 23.12.2010) and a Research Associateship (to SKB). Professor Gandhi K. Kar and Mrs. Maumita Rakshit thank the Vice-Chancellor, Presidency University for laboratory facilities and the CSIR, Govt. of India for the award of a CSIR-NET Fellowship (to MR). All the authors are also thankful to Mr. B. Majumdar and Mr. S.R. Maji, both of the Bose Institute, for recording the NMR and GC-EI-MS spectra, respectively.

References

 http://dx.doi.org/10.1021/cr020033s
 http://dx.doi.org/10.1002/med.20080
3. MDL Drug Data Report; MDL Information Systems Inc.: San Leandro, CA, USA.
http://dx.doi.org/10.2174/138955705774329564

http://dx.doi.org/10.1007/s00706-012-0859-5

http://dx.doi.org/10.1002/jhet.992

http://dx.doi.org/10.3998/ark.5550190.0011.b22

http://dx.doi.org/10.1016/j.tet.2008.05.009

http://dx.doi.org/10.1016/j.tetlet.2007.05.144

http://dx.doi.org/10.1016/j.tetlet.2005.02.125

http://dx.doi.org/10.1016/j.tet.2004.12.022

http://dx.doi.org/10.1023/A:1017515300244

http://dx.doi.org/10.1021/jm060420k
 http://dx.doi.org/10.1016/j.bmcl.2009.06.047
 http://dx.doi.org/10.1021/ja200437g
 http://dx.doi.org/10.1016/j.bmcl.2013.02.074
 http://dx.doi.org/10.1002/978-008096519-2.00056-4
 http://dx.doi.org/10.1007/s10593-011-0743-y
 http://dx.doi.org/10.1002/jhet.599
 http://dx.doi.org/10.1016/j.tet.2006.04.041
 http://dx.doi.org/10.1016/B978-008096519-2.00056-4

