The University of Michigan, an encyclopedic survey ... Wilfred B. Shaw, editor.
University of Michigan.
Page  1238

THE DEPARTMENT OF ENGINEERING MECHANICS

THE chair of engineering mechanics was established at the University of Michigan in July, 1911. Before that time instruction in mechanics had been given by the departments of Physics and Mathematics, and the course Strength of Materials was taught by the Department of Civil Engineering. The fact that this department was satisfied to leave the teaching of statics and dynamics to the departments of Physics and Mathematics may be taken as evidence that there was no particular interest in those subjects. The subject of strength of materials was taught by the Department of Civil Engineering essentially with reference to structural engineering. In the decade preceding 1912, other engineering departments, particularly the departments of Mechanical and Electrical Engineering, had become more interested in dynamics and kinematics than was the Department of Civil Engineering, and these departments were also rapidly becoming more interested in strength of materials. To them, however, strength of materials included such subjects as dynamic loading, resilience, and stress concentration, problems which could expect but scant treatment at the hands of civil engineers. It was natural, then, that an interest developed in the establishment of a separate Department of Engineering Mechanics administered with a view to serving the interests of the various departments. The feeling that existed at the time relative to the proposed change is illustrated by a communication on the subject from Dean Cooley to the Board of Regents under date of July 12, 1911:

1. The Faculty of the Department of Engineering on July 11, 1911, voted to recommend to the Regents that a Chair of Engineering Mechanics be created in the Department of Engineering, to have charge of applied mechanics as the same shall be prescribed and directed to be taught by the faculty.

This step has been under consideration for nearly two years, and during the second semester of 1910 was actively discussed… In the early days the subjects of applied mechanics were naturally taught by the professor of civil engineering, as that was the only engineering course in the University; but with the advent of other branches of engineering there arose the necessity of modifying the instruction so as better to meet the needs of the new engineering courses.

At the present time the Department of Engineering embraces courses of instruction leading to thirty-three different degrees…

While the instruction in applied mechanics by the staff in civil engineering has been of a very high order and has been given with most commendable ideals in mind, there has grown up the belief, now general in the Department, that it is too much to expect of a group of men, all specialists in one branch of engineering, to present the several subjects in applied mechanics in a manner best suited to the varied needs of the Department, made up, as it is, of a large number of branches in engineering.

Applied mechanics is fundamental to all branches of engineering, but some branches require a more extended treatment of portions of the subject than others. For example, civil engineers require more of statics, and mechanical engineers more of dynamics, while chemical engineers and architects have no need to pursue these subjects beyond the elementary or first presentation of them. It is, therefore, proposed to embrace in engineering mechanics the courses required by all students alike, leaving each department to supplement the general courses along a desired Page  1239line; or, if preferred by any department, there will be offered under engineering mechanics additional courses to meet the special needs of that department.

In this way two important objects will be accomplished: — First, the keeping together of all the students of the different branches for a longer period, and in consequence, a greater homogeneity in the Department; … Second, the student pursuing a branch of engineering which makes but limited use of applied mechanics is not burdened with instruction of no apparent use to him, and in consequence has more time for the courses in which he is particularly interested.

There is still a third object which to me seems very important, namely, the opportunity which will be afforded the civil engineering department to introduce or to make more important, new lines of work, such as sanitary, municipal, and railway engineering, waterways and highways. While courses of instruction are offered along some of these lines, they have not, in my opinion, been given the prominence they deserve in a modern school of engineering.

.....

It is anticipated that by the intermingling of the work of those engaged in teaching pure mathematics and engineering mechanics, both the teacher and the student will profit, in that the two subjects will be brought into closer harmony, and there will be a better understanding of principles and of the applications of pure mathematics to engineering problems.

The one most important thing to guard against is the tendency of the different departments of engineering to grow apart or separate. It should be our constant effort in the future to cement or weld together the different interests so that our output of engineering and architectural graduates will be, first of all, engineers and architects having enough interests in common to bring about mutual acquaintance and with it some knowledge of the problems of particular interest to each in his own line of work. This, it is believed, will be one of the conspicuous results following the creation of the chair in engineering mechanics, which the faculty of the Department of Engineering has recommended.

Should this recommendation meet with your approval, then it is further recommended:

2. That the necessary rearrangement of studies be authorized, this work to be done by a committee of the faculty of the Department of Engineering, subject to the approval of the President.

Sufficient work has already been done by a committee appointed by the Dean, to demonstrate that it will be perfectly feasible to begin work under the new plan with the opening of college in October next.

3. That the proposed changes go into effect with the beginning of the college year 1911-12.

4. That the necessary rearrangement of the teaching staff be authorized, this work to be done by a committee to be appointed by the Dean of the Department of Engineering, such changes as are recommended to be subject to the approval of the President.

As already explained, it is proposed merely to assign certain of the teachers in civil engineering and mathematics to give a part or the whole of their time to the work of the new department of Engineering Mechanics, without change of title for the present and without change of salary. When so engaged these teachers will be under the direction of the head of the department of engineering mechanics.

5. That the Physical Testing Laboratory be under the direction of the chair in engineering mechanics, and that free access to and use of the Hydraulic Laboratory be also granted to this department.

These laboratories are primarily for research and demonstration work in connection with subjects in applied mechanics, and this action is recommended to avoid any possible misunderstanding in the future.

6. While the Standing Committee has not formally considered any candidates for the new chair, I am informed, from conversation with the members of the committee, that Professor Charles Joseph Tilden, Junior Professor of Civil Engineering, would be most acceptable for this Page  1240position. It is, therefore, recommended that he be appointed Professor of Engineering Mechanics at a salary of $2,500 per annum…

7. It is further recommended that Professor Albert Emerson Greene be promoted to Professor of Civil Engineering at $2,500 per annum.


(R.P., 1910-14, pp. 201-5.)

Professor Charles Tilden was promoted to the newly established chair of engineering mechanics, and the necessary rearrangement of studies caused by separating the subject of applied mechanics from the study of civil engineering and placing it in a separate Department of Engineering Mechanics was approved.

The changes went into effect with the year 1911-12, when the teaching staff of the department was provided. The Physical Testing Laboratory was put under the direction of the chair of engineering mechanics, which was also given free access to and use of the Hydraulic Laboratory.

Viewed in retrospect, it is difficult to realize that feeling could have run so high over the creation of an independent Department of Engineering Mechanics, resulting in the resignations of Professor Williams, chairman of the Department of Civil Engineering, and several members of the department staff, particularly of Albert E. Greene, Assistant Professor of Civil Engineering. Since 1912 many other colleges of engineering have established separate departments of engineering mechanics.

The chairmanship of the Department of Engineering Mechanics has been held successively by Charles Joseph Tilden (Harvard '96e [C.E.], A.M. hon. Yale '19), 1911-13; Arthur James Decker ('05e [C.E.]), 1913-14; George Washington Patterson (Yale '84, Ph.D. Munich '99), 1915-30; and Edward Leerdrup Eriksen (Polytechnical School, Copenhagen, Denmark '10e [C.E.]), 1930-.

Other past and present members of the staff include: Ferdinand Northrup Menefee (Nebraska '08e, C.E. Cornell '10, D.Eng. Lawrence Institute of Technology '37), 1912-; John Airey (London '10), 1912-24 (from 1922 to 24 Airey was also Director of Engineering Shops); Walter Turner Fishleigh ('06e [C.E.]), 1913-16; Frank Howard Stevens (Chicago '08), 1915-35; Jan Abram Van den Broek (Kansas '11, Ph.D. Michigan '18), 1914-; Orlan William Boston ('14e [M.E.], M.E. '26), 1914-20; Roy Stanley Swinton ('10e [C.E.], M.S.E. '20), 1915-; Richard Thomas Liddicoat ('16e [C.E.], Ph.D. '40), 1919-; Charles Thomas Olmsted (Case School '08e [C.E.]), 1920-; Russell Alger Dodge ('16e [C.E.], M.S.E. '18), 1921-; Holger Mads Hansen (Polytechnisk Laereanstalt '14e [C.E.]), 1932-; Roswell Earl Franklin ('20e [M.E.]), 1922-33; Lloyd Hamilton Donnell ('15e [M.E.], Ph.D. '30), 1923-31; Stephen Timoshenko (Inst. Ways of Communication [St. Petersburg] '01, D.Sc. hon. Lehigh '36, D. Eng. hon. Michigan '38), 1927-36; Franklin Leland Everett ('25e [M.E.], Ph.D. '31), 1931-; Donovan Harold Young (Washington State '27, Sc.D. Michigan '35), 1931-37; Jesse Ormondroyd (Pennsylvania '20), 1937-; William Walsh Hagerty (Minnesota '39e [M.E.], Ph.D. Michigan '47), 1942-; Paul Franklin Chenea (California '40, Ph.D. Michigan '49), 1946-52; Paul Mansour Naghdi (Cornell '45e [M.E.], Ph.D. Michigan '51), 1949-; Edward Axel Yates (Massachusetts Institute of Technology '29, M.S.E. Michigan '49), 1948-.

Since the establishment of the department some sections of the elementary courses have been taught by members of other departments, especially of the departments of Engineering Drawing, Civil Engineering, Mechanical Engineering, and Mathematics. Members Page  1241of the staff of the Department of Engineering Mechanics have in turn reciprocated occasionally by teaching courses in the departments of Civil Engineering and Mathematics.

In the elementary courses offered when the department was established, no radical changes were introduced except in Dynamics, which was offered as an almost entirely new course by Airey.

In June, 1929, the Regents approved a special curriculum for the Department of Engineering Mechanics. The undergraduate student who completed his work in this program received the degree of bachelor of science in engineering (engineering mechanics) and might pursue work for the master's and the doctor's degrees. The program was initiated by Timoshenko. During the time that he was with the University Timoshenko developed a number of graduate courses in engineering mechanics. The influence of his teaching, books, and scientific papers has been predominant in the development of advanced mechanics in the United States.

In June, 1950, the Executive Board of the Graduate School granted the request of the Department of Engineering Mechanics to confer the degree of master of science upon the completion of extension work offered at the Rackham Building in Detroit by members of the department staff.

Laboratories. — At a meeting of the Board of Regents held in June, 1880, Regent Shearer, in reference to a communication from Assistant Professor J. B. Davis, of the Department of Civil Engineering, concerning the establishment of a Strength of Materials Laboratory, recommended the adoption of the following resolution:

That the sum of twenty-five hundred and fifty ($2550.00) dollars, or so much thereof as may be necessary, be, and hereby is appropriated, to be expended under the charge of Assistant Professor J. B. Davis for the purpose of erecting a suitable building, and preparing to give practical tests and instruction in the strength and uses of the various materials used in the constructive arts.


(R.P., 1876-81, p. 548.)
The matter at that time was laid on the table. Apparently this was the first recorded effort, although an unsuccessful one, for the establishment of a Strength of Materials Laboratory.

It was not until about ten years after Mortimer E. Cooley came to the University that he purchased the first testing machine. This was an Olsen universal testing machine of 100,000 pounds' capacity and was the nucleus of the present Engineering Mechanics Laboratory. It was installed in the southeast corner of the basement of the Engineering Building, which had been completed in 1886. Professor Charles E. Greene, chairman of the Department of Civil Engineering, was in charge of the machine. He used it in producing deflections of wrought iron beams to find the "coefficient" of elasticity. According to Dean Cooley, Greene "pulled everything." The machine was regarded as something entirely new.

After the West Engineering Building was completed in 1904, the machine was transferred to the basement. In 1905 a Reihle 200,000-pound universal machine was installed. Other machines, such as a Reihle 50,000-pound universal machine, a 10,000-pound horizontal transverse testing machine, a 10,000-pound horizontal wire tester, and a small arbitration bar tester were added in 1908. The laboratory at that time was under the direction of Gardner S. Williams.

The Testing Materials Laboratory was moved in 1910 to Rooms 101, 101-A, and 102, which had been made available when the Electrical Engineering Laboratory Page  1242moved to the new north wing. A course known as E.M. 5, Testing Materials, consisting of both lectures and laboratory experiments, was offered by Tilden in both semesters of 1911 for two hours' credit.

In the new location Menefee and Van den Broek taught and conducted their own experiments. Problems such as strength of welds and the effect of cold working were studied. A part of the laboratory in which Menefee determined physical properties of cement mixtures was equipped for preparing concrete specimens.

At the time of World War I the original 100,000-pound universal machine was drafted for service elsewhere. After the war it was returned — the weighing beam and a support for the tension head broken.

The Chicago World's Fair in 1903 popularized the monorail car. Shortly thereafter, a small model made its appearance in the laboratory, traveling frequently the length of its 100-foot course. The gyroscopic ship stablilizer, invented by Sperry, was also represented by a fair-sized model. Other demonstration apparatus, such as a device for illustrating critical speeds and resonance in helical springs and shafts, was added by Liddicoat in 1923. Donnell, in 1927, built a device for determining the acceleration due to gravity and coefficients of friction of several sliding bodies. Other small models and experimental equipment, such as the inertia pendulum, were also added.

Young helped to organize the laboratory work in experimental dynamics during the period from 1932 to 1937. This laboratory was housed in one of the rooms on the third floor of the West Engineering Annex.

Timoshenko was brought to the College of Engineering in the fall of 1927 for the specific purpose of promoting graduate work and building up a research laboratory. During the first few years his efforts were devoted principally to lectures and to directing graduate studies. In 1930 rooms on the third floor of the Engineering Annex were made available for research. Among early investigations were those conducted by Donnell on a model to illustrate wave phenomena caused by impact, creep in torsion at high temperatures, conducted by F. L. Everett, and photoelastic studies by M. M. Frocht. Many research projects were undertaken under Timoshenko's direction from 1927 until his resignation in 1936.

Equipment purchased about 1930 included a 72,000-pound capacity Amsler universal machine, a Losenhausen torsion fatigue machine, two Westinghouse pure bending fatigue machines, six Huggenberger tensometers, a Martens mirror extensometer set, a Heiser polariscope, and a Geiger vibrograph. In the following years various special fatigue machines for torsion and bending were built, including a fatigue machine for combined torsion and bending, after the designs furnished by Dr.H.J. Gough, of England.

Undergraduate familiarity with the Strength of Materials Laboratory and with research problems became more general in 1931 and thereafter because of a complete revamping of the course known as E.M. 2a. This work was begun by Eriksen, Timoshenko, and Everett, who was in charge of the program of reorganization. New small experimental apparatus was constructed by which the stresses and deflections due to twist, bending, and buckling of slender columns could be investigated. Engineering students have found this required course helpful in supplementing the theoretical course, Strength of Materials.

To provide laboratory facilities for the Navy V-12 Program in 1942 it was Page  [unnumbered]Page  [unnumbered]

[missing figure]
Marion LeRoy Burton
Page  1243necessary to remodel part of the existing Fluid Mechanics Laboratory, with the result that this relatively small laboratory contains good equipment which is used for teaching as well as for research purposes.

During the years 1945-52 the Department of Engineering Mechanics acquired several new testing devices, such as a tension torsion machine with a capacity of 10,000 inch-pounds in torsion and 10,000 pounds in tension simultaneously, a new universal testing machine with a capacity of 120,000 pounds in torsion and compression, and a tension and compression machine with a capacity of 60,000 pounds in tension and compression. Numerous pieces of equipment have been added to measure static and dynamic strain, vibratory motions, and temperature.

SELECTED BIBLIOGRAPHY

Announcement, College of Engineering (title varies), Univ. Mich., 1910-52.
Calendar, Univ. Mich., 1908-14.
Catalogue …, Univ. Mich., 1914-23.
MS, "Minutes of the Meetings of the Faculty of the Department (College since 1915) of Engineering."
Notebook by a group of five students dated Feb. 5, 1909.
President's Report, Univ. Mich., 1920-52.
Proceedings of the Board of Regents …, 1876-1952.
Special Announcement, College of Engineering. Univ. Mich., 1898-1952.