Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson.
Annotations Tools
~ 32] FROBENIUS'S THEOREM 79 Among the operators of A there may be several which have the same constituent P of order pX. All such operators are the direct product of P and operators whose orders are divisors of s, and all the operators of A may be divided into distinct sets such that each set is composed of all the operators of A which have the same constituent of order p. We proceed to prove that the number of operators in the combined sets which involve all the conjugates of P under G is divisible by s, and hence that the total number of operators in A is divisible by s. To prove this fact, we consider all the operators of G which are commutative with P. These form a subgroup H of order pXr, and the quotient group of H with respect to the cyclic group generated by P is of order r. The orders of the operators of this quotient group which divide s must also divide the highest common factor (t) of s and r. As the order of this quotient group involves fewer factors than G does we may assume that the number of its operators whose orders divide t is kt. Hence A contains exactly kt operators which have the same constituent P. The combined sets which involve no operator of order pX\ except the conjugates of P under G, must therefore involve gkt/(pXr) distinct operators, since P has g/(pXr) conjugates under G. Since g is divisible by s and r, it follows that gt is divisible by rs, t being the highest common factor of r and s. Hence s is a divisor of gkt/r. As s and pX are relatively prime, s must also be a divisor of gkt/(pXr), and the theorem in question has been proved. While the number of the operators of G whose orders divide any divisor n of g is always a multiple of n, it does not follow that groups exist in which the number of these operators is an arbitrary multiple of n. For instance, if pa is the highest power of the prime p which divides g, G contains at least one subgroup of order p", according to Sylow's theorem. If G contains only one such subgroup this must be invariant and hence G involves only p' operators whose orders divide pa. If G contains more than one subgroup of order pa, it must contain at least p+1 such subgroups, since one such subgroup
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page #4 - Title Page
-
Scan #5
Page #5
-
Scan #6
Page #6
-
Scan #7
Page #7
-
Scan #8
Page V
-
Scan #9
Page VI
-
Scan #10
Page VII
-
Scan #11
Page VIII
-
Scan #12
Page IX
-
Scan #13
Page X
-
Scan #14
Page XI - Table of Contents
-
Scan #15
Page XII - Table of Contents
-
Scan #16
Page XIII - Table of Contents
-
Scan #17
Page XIV - Table of Contents
-
Scan #18
Page XV - Table of Contents
-
Scan #19
Page XVI - Table of Contents
-
Scan #20
Page XVII - Table of Contents
-
Scan #21
Page #21
-
Scan #22
Page 1
-
Scan #23
Page 2
-
Scan #24
Page 3
-
Scan #25
Page 4
-
Scan #26
Page 5
-
Scan #27
Page 6
-
Scan #28
Page 7
-
Scan #29
Page 8
-
Scan #30
Page 9
-
Scan #31
Page 10
-
Scan #32
Page 11
-
Scan #33
Page 12
-
Scan #34
Page 13
-
Scan #35
Page 14
-
Scan #36
Page 15
-
Scan #37
Page 16
-
Scan #38
Page 17
-
Scan #39
Page 18
-
Scan #40
Page 19
-
Scan #41
Page 20
-
Scan #42
Page 21
-
Scan #43
Page 22
-
Scan #44
Page 23
-
Scan #45
Page 24
-
Scan #46
Page 25
-
Scan #47
Page 26
-
Scan #48
Page 27
-
Scan #49
Page 28
-
Scan #50
Page 29
-
Scan #51
Page 30
-
Scan #52
Page 31
-
Scan #53
Page 32
-
Scan #54
Page 33
-
Scan #55
Page 34
-
Scan #56
Page 35
-
Scan #57
Page 36
-
Scan #58
Page 37
-
Scan #59
Page 38
-
Scan #60
Page 39
-
Scan #61
Page 40
-
Scan #62
Page 41
-
Scan #63
Page 42
-
Scan #64
Page 43
-
Scan #65
Page 44
-
Scan #66
Page 45
-
Scan #67
Page 46
-
Scan #68
Page 47
-
Scan #69
Page 48
-
Scan #70
Page 49
-
Scan #71
Page 50
-
Scan #72
Page 51
-
Scan #73
Page 52
-
Scan #74
Page 53
-
Scan #75
Page 54
-
Scan #76
Page 55
-
Scan #77
Page 56
-
Scan #78
Page 57
-
Scan #79
Page 58
-
Scan #80
Page 59
-
Scan #81
Page 60
-
Scan #82
Page 61
-
Scan #83
Page 62
-
Scan #84
Page 63
-
Scan #85
Page 64
-
Scan #86
Page 65
-
Scan #87
Page 66
-
Scan #88
Page 67
-
Scan #89
Page 68
-
Scan #90
Page 69
-
Scan #91
Page 70
-
Scan #92
Page 71
-
Scan #93
Page 72
-
Scan #94
Page 73
-
Scan #95
Page 74
-
Scan #96
Page 75
-
Scan #97
Page 76
-
Scan #98
Page 77
-
Scan #99
Page 78
-
Scan #100
Page 79
-
Scan #101
Page 80
-
Scan #102
Page 81
-
Scan #103
Page 82
-
Scan #104
Page 83
-
Scan #105
Page 84
-
Scan #106
Page 85
-
Scan #107
Page 86
-
Scan #108
Page 87
-
Scan #109
Page 88
-
Scan #110
Page 89
-
Scan #111
Page 90
-
Scan #112
Page 91
-
Scan #113
Page 92
-
Scan #114
Page 93
-
Scan #115
Page 94
-
Scan #116
Page 95
-
Scan #117
Page 96
-
Scan #118
Page 97
-
Scan #119
Page 98
-
Scan #120
Page 99
-
Scan #121
Page 100
-
Scan #122
Page 101
-
Scan #123
Page 102
-
Scan #124
Page 103
-
Scan #125
Page 104
-
Scan #126
Page 105
-
Scan #127
Page 106
-
Scan #128
Page 107
-
Scan #129
Page 108
-
Scan #130
Page 109
-
Scan #131
Page 110
-
Scan #132
Page 111
-
Scan #133
Page 112
-
Scan #134
Page 113
-
Scan #135
Page 114
-
Scan #136
Page 115
-
Scan #137
Page 116
-
Scan #138
Page 117
-
Scan #139
Page 118
-
Scan #140
Page 119
-
Scan #141
Page 120
-
Scan #142
Page 121
-
Scan #143
Page 122
-
Scan #144
Page 123
-
Scan #145
Page 124
-
Scan #146
Page 125
-
Scan #147
Page 126
-
Scan #148
Page 127
-
Scan #149
Page 128
-
Scan #150
Page 129
-
Scan #151
Page 130
-
Scan #152
Page 131
-
Scan #153
Page 132
-
Scan #154
Page 133
-
Scan #155
Page 134
-
Scan #156
Page 135
-
Scan #157
Page 136
-
Scan #158
Page 137
-
Scan #159
Page 138
-
Scan #160
Page 139
-
Scan #161
Page 140
-
Scan #162
Page 141
-
Scan #163
Page 142
-
Scan #164
Page 143
-
Scan #165
Page 144
-
Scan #166
Page 145
-
Scan #167
Page 146
-
Scan #168
Page 147
-
Scan #169
Page 148
-
Scan #170
Page 149
-
Scan #171
Page 150
-
Scan #172
Page 151
-
Scan #173
Page 152
-
Scan #174
Page 153
-
Scan #175
Page 154
-
Scan #176
Page 155
-
Scan #177
Page 156
-
Scan #178
Page 157
-
Scan #179
Page 158
-
Scan #180
Page 159
-
Scan #181
Page 160
-
Scan #182
Page 161
-
Scan #183
Page 162
-
Scan #184
Page 163
-
Scan #185
Page 164
-
Scan #186
Page 165
-
Scan #187
Page 166
-
Scan #188
Page 167
-
Scan #189
Page 168
-
Scan #190
Page 169
-
Scan #191
Page 170
-
Scan #192
Page 171
-
Scan #193
Page 172
-
Scan #194
Page 173
-
Scan #195
Page 174
-
Scan #196
Page 175
-
Scan #197
Page 176
-
Scan #198
Page 177
-
Scan #199
Page 178
-
Scan #200
Page 179
-
Scan #201
Page 180
-
Scan #202
Page 181
-
Scan #203
Page 182
-
Scan #204
Page 183
-
Scan #205
Page 184
-
Scan #206
Page 185
-
Scan #207
Page 186
-
Scan #208
Page 187
-
Scan #209
Page 188
-
Scan #210
Page 189
-
Scan #211
Page 190
-
Scan #212
Page 191
-
Scan #213
Page 192
-
Scan #214
Page 193
-
Scan #215
Page 194
-
Scan #216
Page 195
-
Scan #217
Page 196
-
Scan #218
Page 197
-
Scan #219
Page 198
-
Scan #220
Page 199
-
Scan #221
Page 200
-
Scan #222
Page 201
-
Scan #223
Page 202
-
Scan #224
Page 203
-
Scan #225
Page 204
-
Scan #226
Page 205
-
Scan #227
Page 206
-
Scan #228
Page 207
-
Scan #229
Page 208
-
Scan #230
Page 209
-
Scan #231
Page 210
-
Scan #232
Page 211
-
Scan #233
Page 212
-
Scan #234
Page 213
-
Scan #235
Page 214
-
Scan #236
Page 215
-
Scan #237
Page 216
-
Scan #238
Page 217
-
Scan #239
Page 218
-
Scan #240
Page 219
-
Scan #241
Page 220
-
Scan #242
Page 221
-
Scan #243
Page 222
-
Scan #244
Page 223
-
Scan #245
Page 224
-
Scan #246
Page 225
-
Scan #247
Page 226
-
Scan #248
Page 227
-
Scan #249
Page 228
-
Scan #250
Page 229
-
Scan #251
Page 230
-
Scan #252
Page 231
-
Scan #253
Page 232
-
Scan #254
Page 233
-
Scan #255
Page 234
-
Scan #256
Page 235
-
Scan #257
Page 236
-
Scan #258
Page 237
-
Scan #259
Page 238
-
Scan #260
Page 239
-
Scan #261
Page 240
-
Scan #262
Page 241
-
Scan #263
Page 242
-
Scan #264
Page 243
-
Scan #265
Page 244
-
Scan #266
Page 245
-
Scan #267
Page 246
-
Scan #268
Page 247
-
Scan #269
Page 248
-
Scan #270
Page 249
-
Scan #271
Page 250
-
Scan #272
Page 251
-
Scan #273
Page 252
-
Scan #274
Page 253
-
Scan #275
Page 254
-
Scan #276
Page 255
-
Scan #277
Page 256
-
Scan #278
Page 257
-
Scan #279
Page 258
-
Scan #280
Page 259
-
Scan #281
Page 260
-
Scan #282
Page 261
-
Scan #283
Page 262
-
Scan #284
Page 263
-
Scan #285
Page 264
-
Scan #286
Page 265
-
Scan #287
Page 266
-
Scan #288
Page 267
-
Scan #289
Page 268
-
Scan #290
Page 269
-
Scan #291
Page 270
-
Scan #292
Page 271
-
Scan #293
Page 272
-
Scan #294
Page 273
-
Scan #295
Page 274
-
Scan #296
Page 275
-
Scan #297
Page 276
-
Scan #298
Page 277
-
Scan #299
Page 278
-
Scan #300
Page 279
-
Scan #301
Page 280
-
Scan #302
Page 281
-
Scan #303
Page 282
-
Scan #304
Page 283
-
Scan #305
Page 284
-
Scan #306
Page 285
-
Scan #307
Page 286
-
Scan #308
Page 287
-
Scan #309
Page 288
-
Scan #310
Page 289
-
Scan #311
Page 290
-
Scan #312
Page 291
-
Scan #313
Page 292
-
Scan #314
Page 293
-
Scan #315
Page 294
-
Scan #316
Page 295
-
Scan #317
Page 296
-
Scan #318
Page 297
-
Scan #319
Page 298
-
Scan #320
Page 299
-
Scan #321
Page 300
-
Scan #322
Page 301
-
Scan #323
Page 302
-
Scan #324
Page 303
-
Scan #325
Page 304
-
Scan #326
Page 305
-
Scan #327
Page 306
-
Scan #328
Page 307
-
Scan #329
Page 308
-
Scan #330
Page 309
-
Scan #331
Page 310
-
Scan #332
Page 311
-
Scan #333
Page 312
-
Scan #334
Page 313
-
Scan #335
Page 314
-
Scan #336
Page 315
-
Scan #337
Page 316
-
Scan #338
Page 317
-
Scan #339
Page 318
-
Scan #340
Page 319
-
Scan #341
Page 320
-
Scan #342
Page 321
-
Scan #343
Page 322
-
Scan #344
Page 323
-
Scan #345
Page 324
-
Scan #346
Page 325
-
Scan #347
Page 326
-
Scan #348
Page 327
-
Scan #349
Page 328
-
Scan #350
Page 329
-
Scan #351
Page 330
-
Scan #352
Page 331
-
Scan #353
Page 332
-
Scan #354
Page 333
-
Scan #355
Page 334
-
Scan #356
Page 335
-
Scan #357
Page 336
-
Scan #358
Page 337
-
Scan #359
Page 338
-
Scan #360
Page 339
-
Scan #361
Page 340
-
Scan #362
Page 341
-
Scan #363
Page 342
-
Scan #364
Page 343
-
Scan #365
Page 344
-
Scan #366
Page 345
-
Scan #367
Page 346
-
Scan #368
Page 347
-
Scan #369
Page 348
-
Scan #370
Page 349
-
Scan #371
Page 350
-
Scan #372
Page 351
-
Scan #373
Page 352
-
Scan #374
Page 353
-
Scan #375
Page 354
-
Scan #376
Page 355
-
Scan #377
Page 356
-
Scan #378
Page 357
-
Scan #379
Page 358
-
Scan #380
Page 359
-
Scan #381
Page 360
-
Scan #382
Page 361
-
Scan #383
Page 362
-
Scan #384
Page 363
-
Scan #385
Page 364
-
Scan #386
Page 365
-
Scan #387
Page 366
-
Scan #388
Page 367
-
Scan #389
Page 368
-
Scan #390
Page 369
-
Scan #391
Page 370
-
Scan #392
Page 371
-
Scan #393
Page 372
-
Scan #394
Page 373
-
Scan #395
Page 374
-
Scan #396
Page 375
-
Scan #397
Page 376
-
Scan #398
Page 377
-
Scan #399
Page 378
-
Scan #400
Page 379
-
Scan #401
Page 380
-
Scan #402
Page 381
-
Scan #403
Page 382
-
Scan #404
Page 383 - Comprehensive Index
-
Scan #405
Page 384 - Comprehensive Index
-
Scan #406
Page 385 - Comprehensive Index
-
Scan #407
Page 386 - Comprehensive Index
-
Scan #408
Page 387 - Comprehensive Index
-
Scan #409
Page 388 - Comprehensive Index
-
Scan #410
Page 389 - Comprehensive Index
-
Scan #411
Page 390 - Comprehensive Index
-
Scan #412
Page #412
-
Scan #413
Page #413
Actions
About this Item
- Title
- Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson.
- Author
- Miller, G. A. (George Abram), 1863-1951.
- Canvas
- Page 60
- Publication
- New York,: John Wiley & sons, inc.; [etc., etc.]
- 1916.
- Subject terms
- Group theory.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acm6867.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acm6867.0001.001/100
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm6867.0001.001
Cite this Item
- Full citation
-
"Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm6867.0001.001. University of Michigan Library Digital Collections. Accessed May 8, 2025.