Add to bookbag
Title: Minimum
Original Title: Minimum
Volume and Page: Vol. 10 (1765), p. 552
Author: Jean Le Rond D'Alembert
Translator: John S.D. Glaus [The Euler Society, restinn@roadrunner.com]
Original Version (ARTFL): Link
Availability:

This text is protected by copyright and may be linked to without seeking permission. Please see http://quod.lib.umich.edu/d/did/terms.html for information on reproduction.

URL: http://hdl.handle.net/2027/spo.did2222.0000.867
Citation (MLA): D'Alembert, Jean Le Rond. "Minimum." The Encyclopedia of Diderot & d'Alembert Collaborative Translation Project. Translated by John S.D. Glaus. Ann Arbor: Michigan Publishing, University of Michigan Library, 2008. Web. [fill in today's date in the form 18 Apr. 2009 and remove square brackets]. <http://hdl.handle.net/2027/spo.did2222.0000.867>. Trans. of "Minimum," Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol. 10. Paris, 1765.
Citation (Chicago): D'Alembert, Jean Le Rond. "Minimum." The Encyclopedia of Diderot & d'Alembert Collaborative Translation Project. Translated by John S.D. Glaus. Ann Arbor: Michigan Publishing, University of Michigan Library, 2008. http://hdl.handle.net/2027/spo.did2222.0000.867 (accessed [fill in today's date in the form April 18, 2009 and remove square brackets]). Originally published as "Minimum," Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, 10:552 (Paris, 1765).

Minimum, in transcendental geometry, indicates the smallest state, or the smallest states of a variable quantity; for this see Maximum .