
EXPECTATION ALONG THE BEAT: A USE CASE FOR MUSIC
EXPECTATION MODELS

Amaury Hazan, Paul Brossier, Piotr Holonowicz, Perfecto Herrera and
Hendrik Purwins

Pompeu Fabra University
Music Technology Group

{ahazan, pbrossier, pholonow, pherrera,
hpurwins}@iua.upf.edu

ABSTRACT

We present a system to produce expectations based on
the observation of a rhythmic music signals at a constant
tempo. The algorithms we use are causal, in order be
fit closer to cognitive constraints and allow a future real-
time implementation. In a first step, an acoustic front-end
based on the aubio library extracts onsets and beats from
the incoming signal. The extracted onsets are then en-
coded in a symbolic way using an unsupervised scheme:
each hit is assigned a timbre cluster based on its timbre
features, while its inter-onset interval regarding the previ-
ous hit is computed as a proportion of the extracted tempo
period and assigned an inter-onset interval cluster. In a
later step, the representation of each hit is sent to an ex-
pectation module, which learns the statistics of the sym-
bolic sequence. Hence, at each musical hit, the system
produces both what and when expectations regarding the
next musical hit. For evaluating our system, we consider
a weighted average F-measure, that takes into account the
uncertainty associated with the unsupervised encoding of
the musical sequence. We then present a preliminary ex-
periment involving generated musical material and pro-
pose a roadmap in the context of this novel application
field.

1. INTRODUCTION

We design and implement a musical learning system aimed
at musical expectation and interaction, following [2, 19,
24, 27]. We emphasise the expectation of the attended
musical audio, rather than other computer music applica-
tions such as improvisation or accompaniment, because it
provides a way to evaluate models of musical expectation
and memory. We first present some related work in the
field of learning of musical sequences and musical expec-
tation.

Sequence learning and structure acquisition have been
modelled in a range of computational architectures. One
approach to address this task consists in using connec-
tionist architectures [28]. Among these methods, recur-
rent neural networks (RNN) can successfully deal with se-
quences of symbols [11, 17]. This is due to their ability to

encode the context of the events, and the fact that the size
of the context is not fixed. This is why RNN have been
considered to address musical tasks. For instance, Mozer
[23] applies them to melody and chord expectation tasks
and shows how to learn musical structures in an invari-
ant form. More recently, Eck and Schmidhuber [10] use
the LSTM architecture [17] to learn Blues improvisations.
On the other hand, Markov-chain models such as N-grams
can be considered.

Such techniques have been long considered in musical
applications from machine improvisation [19] to cogni-
tive modelling of music perception [12]. A detailed re-
view of monophonic musical sequence modelling is given
in [26]. Other approaches make use of Markovian mod-
elling to learn the structure of musical sequences in an in-
teraction setting, the best known being the Pachet’s Con-
tinuator [24]. Assayag and Dubnov [2] use a new pat-
tern matching algorithm called the oracle factor [1] to hi-
erarchically encode the presented sequences. This latter
work has been applied to audio signals by using an acous-
tic front end. Nevertheless, little attention has been di-
rected to non-symbolic approaches to musical sequence
modelling. Raphael [27] investigates accompaniment and
score following from audio signals using hidden Markov
models and polyphonic transcription.

Also, Cemgil [6] uses dynamic Bayesian networks to
perform rhythm and tempo tracking and polyphonic pitch
tracking. Among the presented works, few have focused
on complex polyphonic musical signals such as those fou-
nd in commercial recordings. Schwarz [29] proposes a
concatenative synthesis based on unsupervised techniques
which is applied to music and speech. Jehan [18] consid-
ers learning and prediction applied to a wider range of mu-
sic signals. The authors suggests several computational
approaches to prediction of musical features (e.g. down-
beat prediction), but do not consider the prediction of a
representation of the musical sequence, which involves
several dimensions. Finally, in [25], Paulus and Klapuri
propose a system to transcribe arbitrary drum sounds. The
system focuses on the sounds’ rhythmic role using cluster-
ing techniques and a meter-relative hit description. How-
ever, to the best of our knowledge, the presented works
have not focused on the expectation of musical audio sig-

 228

nals through the encoding of beat-relative timing and tim-
bre features using a causal approach. Here, we aim to
enable the processing of simple percussive material to ob-
tain a system which can be used in the context of mod-
elling musical expectation and memory from both com-
putational and cognitive points of view.

We integrate symbolic expectation models in the sys-
tem, but we propose in Section 5 some ideas to extend our
approach to non-symbolic models. We focus here on per-
cussive musical sequences because (a) methods are avail-
able to form a symbolic representation of percussive sig-
nals, with a reasonable though far from perfect accuracy 1

(b) percussive sequences can only be learned and expected
by solving both what and when expectation tasks, as op-
posed to former works focusing on the next pitch predic-
tion [21, 31] without taking into account the timing of the
musical events, and (c) modelling learning and expecta-
tion of percussive sequences provides a complementary
viewpoint with an emphasis on timing and timbre patterns
which may help modelling the perception of real-world
musical signals along with melodic and tonal approaches.

The system is modelled after the following assump-
tions: first, it is designed to encode and expect musical
hits while analysing signals that exhibit musical period-
icity, mainly because the timing is described relative to
the extracted beat. That is, our representation requires the
attended musical material to exhibit clear beats and on-
sets. Then, the core processes are supposed to be causal,
in order to both respect a strong assumption of how cog-
nitive processes work and allow real-time implementation
for interactive music applications.

We present the system components in Section 2. The
implementation of the resulting system is presented in Sec-
tion 3. Preliminary experimental results on a range of au-
dio signals are shown in Section 4. In Section 5, we dis-
cuss these preliminary results and propose extensions and
alternatives to our approach. Finally, a conclusion is pre-
sented in Section 6.

2. SYSTEM

We give here the details of the main components of the
system: listen, encode, expect, and play modules. These
components, all of which run simultaneously when the
system is following a musical stream, are shown in Fig-
ure 1. First, the listen module is the audio front-end, which
extracts timbre descriptors, onsets and beats from the in-
coming signal. This module is based on the aubio library
[5]. Each extracted hit is encoded in the encode module
based on both timbre description and beat-relative inter-
onset interval, following an unsupervised scheme. There-
fore, we obtain a symbolic representation of the incoming
events, to be used by the expect module. Based on the
generated expectation, the play module synthesises a mu-
sical event. Several synthesis strategies can be considered

1 A comparison of recent techniques to transcribe music audio can be
found on http://www.music-ir.org/mirex2006/

Figure 1. Overview of the system: the incoming audio
stream is analysed by the listener module, which provides
a transcription (beats, onsets, timbre descriptors) to the
encoder module. The encoder produces a reduced repre-
sentation of this information, which is passed to the ex-
pectation module. Based on the produced expectations,
the play module generates an output stream.

depending on the application. We will present some alter-
natives in Section 2.4.

2.1. Listen module

The listen module uses the aubio library [4]. The library
provides various functions to extract onset and beat loca-
tions, pitch, and other descriptors such as spectral centroid
and zero-crossing rate.

2.1.1. Temporal detection

The extraction of onset and beat location is done using the
aubio software library [5]. We use a HFC-based detection
function and the default parameters for the tempo detec-
tion algorithm [9]. We show in Figure 2 the result of the
temporal detection process for a musical signal example.

2.1.2. Timbre description

We aim at providing a timbral description of the cues ex-
tracted by the onset detector. The timbral descriptors have
to be general enough to be applied to a range of musical
signals, while they also need to be specific enough to en-
able the discrimination of perceptually different acoustic
cues. As a starting point, we decide to restrict ourselves
to a simple description of each hit, based on the following
features:

• Zero crossing rate

• Spectral centroid

Note here that the resulting timbre description may be
seen as simplistic, as opposed to more refined approaches
to timbre description (see [16]). However, this setting has

 229

Figure 2. Temporal descriptors obtained on the presented
waveform, a simple percussion pattern using three drum
instruments. Onsets are marked with x-marks on the top,
while beat are marked with crosses at the bottom. The
onset detection threshold value is set to 1.

yielded good results when applied to real-time percus-
sive transcription applications [15] involving simple sig-
nals (monophonic voice, simple drum instruments). We
plan to extend our approach to a wider range of descrip-
tors in future work. Note that the subsequent processes
involved in the system work independently of the set of
descriptors used.

We will see in Section 4 that the descriptor set we re-
tained here yields limited results when the system deals
with more complex signals.

2.2. Encode module

The encode module is responsible for producing a repre-
sentation from the data (i.e. beats, onset times, and onset
descriptors) obtained by the listener module. We aim at
producing a symbolic representation of the incoming mu-
sical events in order to enable symbolic sequence predic-
tion. However, we plan to extend this approach in future
in order to implement sub-symbolic representations (see
Section 5). The encode module has two distinct states,
bootstrap and running, which are described as follows.

2.2.1. Bootstrap state

At initialisation time, the system starts from scratch and
is exposed to a new musical sequence. Before starting to
effectively encode and expect musical events, the system
accumulates observations and therefore acts as a short-
term memory buffer to accumulate statistics based on the
incoming hits. The idea behind this step is that we can
take advantage of the time needed (approximately 6s de-
pending of the tempo) by the beat detector to adjust the
parameters and distance metrics involved in the running
state processes.

Here, we aim to refine the timbre descriptors distance
and estimate the number of timbre and inter-onset inter-

val clusters to be represented. Therefore, at the end of
the bootstrap state, we normalise the timbre descriptors
so that they have a zero mean and a unit variance. Ad-
ditionally, we rely on the Bayesian Information Criterion
(BIC, [30]) to estimate the number of clusters. Note that
this latter process, if it helps to obtain a estimate of the
number of clusters to encode, is also error prone and non-
deterministic. We will have to deal with the resulting vari-
ability of clusters estimates when evaluating the system.

2.2.2. Running state

During the running state, the encoder produces a represen-
tation of each musical event, based on adjusted parameters
and metrics during the bootstrap step. This representation
is obtained by quantising and categorising the following
event features:

• Timbre descriptors

• Time duration of the previous segment expressed in
quarter notes at the current computed tempo, which
we name relative inter onset interval.

We use an unsupervised categorisation process to rep-
resent the space of input events. We use an online k-
means clustering algorithm (as presented in [3]) to split
the event space as musical events are presented to the sys-
tem. When processing a data set, the well known k-means
algorithm [14] assigns each instance to a cluster (from a
set of fixed size), updates the clusters iteratively, and stops
when the cluster assignments converge. The online algo-
rithm we use here does not need to store the instances,
but instead updates the clusters in a single pass when pro-
cessing a new instance. This makes the online k-means
order-dependent: when dealing with two sequences con-
taining the same items, but in different order, different
assignments will be formed. Here we fix the number of
clusters at the end of the bootstrap period based on the
BIC estimate, we will go back to this point in Section 5.

In Figure 3 (respectively Figure 4), we show the re-
sults of encoding the timbre descriptors (respectively the
beat-relative interonset intervals) for the example musical
signal used in Figure 2.

2.3. Expect module

The expect module has to deduce the most likely future
events based on the sequence observed so far. We aim
to consider a range of expectation models that we have
already applied to symbolic learning tasks [22]. Here, for
the sake of compactness, we will restrict our attention to
one model. We use a N-gram model, which relies on an
exhaustive enumeration of all the possible subsequences
and counts their occurrences in the presented data.

N-gram modelling provides a straightforward and effi-
cient approach to probabilistic reasoning and expectation.
When a new event xt is appended in the input sequence,
a two-dimensional table, indexing the occurrences of all
possible sequences of length n, is incremented by one at

 230

Figure 3. Timbre cluster assignments plotted along the
[normalized zcr, normalized centroid] axis. The nor-
malised distance is obtained at the end of the bootstrap
step. Here, three clusters are appearing and are marked
with triangle, squares and x-marks.

Figure 4. Beat-relative inter-onset interval histogram
along with the three cluster centroids, each centroid be-
ing annotated with a x-mark. The two clusters around
the quarter note correspond to small deviations from an
isochronous rhythm.

Figure 5. Comparison of encoding (top) and expectation
(bottom) of the musical sequence. Ticks from a given
cluster have the same height and grey intensity. Each ex-
pected tick is produced based on the previous transcribed
tick. Note that the system needs a preliminary settling step
before providing accurate expectations.

the position with row corresponding to the sequence xt−n

... xt−1 and at the column corresponding to the symbol xt.
This means the count table has nsymbolsN cells, where
nsymbols is the number of possible symbols. As such,
this technique is expensive in terms of space, even if we
can use sparse matrix implementations to reduce the size
of the transition tables. From the count table and an ob-
servation of the actual sequence, we can derive the pos-
terior probability for each possible symbol and produce
an expectation accordingly. The N parameter controls the
amount of past events considered in the prediction and has
to be adjusted carefully. Indeed, an inaccurate choice of
N may affect the behaviour of the learner by biasing it to
too general predictions (low N), and to over fit prediction
(high N). We use here a simple N-Grams model as op-
posed to more refined approaches in which several models
with different context lengths are combined [26]. Overall,
this model has the advantage of having fewer parameters
than more complex approaches (e.g. recurrent neural net-
works).

When an expectation is produced, both next hit class
and next hit inter-onset interval are computed. We show
in Figure 5 the outcome of the expectator module when
processing the example used in Figure 2. Based on the
generated expectation, we can call the play module.

2.4. Play module

At each time step, the player updates its playing queue:
next event playing times are updated by subtracting them
the hop size expressed in quarter notes duration at the rel-
ative tempo. We propose two strategies for sound gener-
ation. First, the system can produce a MIDI event that is
used in a software sampler to generate a percussive output
stream. To determine which encoded cluster corresponds

 231

to which output sound we sort the drum clusters accord-
ing to their timbre descriptors means projected along the
axis between the more distant cluster means. A second al-
ternative lies in using inter-onset audio slices extracted by
the listener module for synthesis, by analogy with [7, 18].
This approach is not cognitively plausible as it implies to
store a considerable amount of signal in a buffer. How-
ever, this provides an interesting way of evaluating the
system qualitatively. When an event from a given cluster
has to be played, we look for the slice in which the timbre
description is the closest to the mean of that cluster.

3. IMPLEMENTATION

Our current implementation is named billabio, as it uses
concepts from both aubio 2 and billaboop 3 projects. The
components of billabio are written in the Python program-
ming language. For efficiency, we make use of compo-
nents implemented in C, such as the aubio routines. We
make use of an object-oriented approach which closely
follows the module description presented in the previous
section. The listen module uses aubio to extract timbre de-
scriptors, onsets and beats from the incoming stream. We
have modified the aubio core to compute timbre descrip-
tors such as energy, spectral centroid and zero-crossing
rate.

Both encode and expect modules, constituting the ma-
chine learning algorithms, are implemented using numpy 4 .
The online k-means algorithm implemented in the encode
module is based on [3], and extended with the bootstrap
step we propose in Section 2.2.1. Additionally, we use the
pyem package [8] to compute the Bayesian Information
Criterion and estimate the number of clusters to encode.
The online k-means learning rate parameter is set to 0.1,
but preliminary experiments show that values in the range
[0.1, 0.5] yield similar results in our application domain.

Finally, the N-gram expectator is implemented using
pysparse, a sparse matrix module for Python. Two expec-
tation schemes are implemented: deterministic expecta-
tion, based on the maximum a posteriori probability, and
non-deterministic expectation, based on uniform sampling
over the posterior probability of each event. When the N-
gram expectator processes an unseen event (i.e. the past
sequence of size N have never occurred before), a random
prediction based on a uniform distribution over the possi-
ble symbols is returned.

4. EXPERIMENTAL RESULTS

In this section we present the method, material, setup we
use for characterising the expectation accuracy of the bil-
labio framework. Then we present the results of these
preliminary experiments.

2 http://aubio.piem.org
3 http://www.billaboop.com
4 http://numpy.scipy.org

4.1. Method

We show here experiments for the what/when expectation
task. At initialisation, the system starts from scratch and is
exposed to an audio excerpt. After the bootstrap step, we
can compare the expected hits with the transcribed hits.
Note that we do not make use of an annotation of the mu-
sical signals, because we first aim to characterise whether
the expectator module can provide expectations similar to
those that were encoded. Following, we introduce the sim-
ilarity metric involved in the evaluation.

4.1.1. Similarity metric

Having in mind both encoded and expected signals (see
5), we propose to treat the encoded signal as the ground
truth. Consequently, we can compute any statistics usu-
ally applied to transcription tasks (e.g. precision, recall
and the resulting F-measure) to compare encoding and ex-
pectation. As an outcome, we could compute the average
F-measure by comparing both transcribed and expected
timbre cluster onset times for each of the timbre clusters.
This would make the resulting measure very similar to
the one used in drum transcription evaluation tasks, e.g.
where three drum classes are clearly defined.

However, such metric cannot be considered here be-
cause of the inexactness of the unsupervised encoding we
use. For instance, the encoder often provides a too large
estimate of the number of clusters (e.g. the encoder re-
turns an estimate of five timbre clusters for an excerpt con-
taining three instruments). Consequently, during the run-
ning state few of these clusters are indeed used, because
a vast majority of the incoming instances are assigned to
a subset of the estimated clusters (in the example, three
of the five estimated clusters). Consequently, the unused
clusters are likely to return very low F-measures, which
may in turn affect the average computed F-measure.

To overcome this issue, we define a weighted average
f-measure as follows:

Fw =
N∑

i=1

wiFi (1)

where N is the total number of timbre clusters, each wi

is obtained by dividing the number of onsets assigned to
cluster i by the total number of onsets, and Fi is the stan-
dard F-measure between onsets assigned to cluster i. That
is, the individual cluster-wise F-measures involved in the
resulting average computation are weighted by the propor-
tion of events appearing in that cluster. This enables to let
the unused clusters out of the metric computation. Addi-
tionally, each F-measure tolerance window is fixed to 40
ms (20 ms before, 20ms after).

Based on this, a weighted F-Measure evaluates to 1
when all of the processed musical expectations are exactly
equal to the transcription (each expected being present
within the tolerance window). A weighted F-Measure would
equal to zero when none of the onsets expected from a
given cluster can be matched with a transcribed onset of

 232

the same cluster. However, we suggest below a more ac-
curate baseline which may enable the comparison of ex-
pectation models.

4.2. Finding the baseline: random expectation results

We aim to compare our expectator results with a baseline
expectator module that would provide random expecta-
tions. That is, given fixed listen and encode modules, we
aim at characterising the difference between computing
expectations using n-grams and providing random expec-
tations. Indeed, considering this baseline, it is possible to
obtain weighted F-measures significantly larger than zero,
because the set of symbols representing the musical struc-
ture is already computed by the encoder.

4.3. Material

4.3.1. First set: generated material

As a first approach, we consider a set of generated audio
signals. We have made the choice of starting evaluating
our system with simple material to ensure that the beat de-
tector and onset detector provide an accurate transcription
of the signals. Therefore, we have generated a set of 9 au-
dio excerpts using a software drum sequencer. This data is
divided into three subsets, generated with two, three, and
four instruments. This will enable us to determine whether
the encoder is able to retrieve the correct number of timbre
clusters. For each of the generated sounds, a unique set of
perceptually different instruments is used (e.g. bass drum
and hi-hat for a 2 instrument sound). All excerpts contain
sixteen beat bars of four beats each.

4.3.2. Second set: acoustic drum recordings

Additionally, we are interested in characterising how the
system behaves using a set of acoustic drum recordings.
Therefore, we use a selection of 9 drums rhythms from
the ENST-Drums database [13]. The excerpts we use are
from the following genres: disco, rock, hard rock, shuffle
rock, country and funk. Note that the original recordings
provided in the database are too short for our system to
provide enough expectations after settling. Consequently
we produced loops from these excerpts to obtain record-
ings with an approximate duration of sixteen beat bars of
four beats each.

4.4. Setup

For each of the audio signal to be analysed, we run the
system using an increasing N-gram length (from 1 to 6),
to test whether the results are length-specific. For each of
these runs, we run the billabio system several times (here
3) because of the stochastic nature of the encoding and ex-
pectation processes. We retain the result that is obtained
using the optimal N-gram length. Consequently, each mu-
sical excerpt presented in last section is analysed 18 times.
Additionally, to test the random expectator condition, we

Excerpt n-gram random
4 timbres 1 0.68 0.19
2 timbres 3 0.66 0.15
2 timbres 1 0.65 0.49
3 timbres 2 0.65 0.42
3 timbres 1 0.62 0.18
3 timbres 3 0.55 0.19
4 timbres 3 0.44 0.22
4 timbres 2 0.36 0.15
2 timbres 2 0.34 0.26

Table 1. Expectation experiment results using the gener-
ated rhythm set. The post-exposure weighted F-measure
is shown under the following conditions: n-gram based
expectator and uniform random guess.

run the system 3 times for each file. This leads to a to-
tal number of runs equal to 189 for each set, totalising
approximately 100 minutes of audio to be analysed. The
average runtime of each experiment is 50 minutes on a
Pentium 4 Ubuntu laptop with 512 Mb of memory.

4.5. Results

In Table 1 and Table 2, we present the results of the exper-
iment presented above for the first and second set. Con-
cerning the first set (generated material), we observe an
average weighted F-measure of 0.55, ranging from 0.34
to 0.66. The random condition baseline gives an aver-
age weighted F-measure of 0.25, ranging from 0.15 to
0.49. Concerning the second set (acoustic drums record-
ings), we observe an average weighted F-measure of 0.59,
ranging from 0.25 to 0.96. The random condition base-
line gives an average weighted F-measure of 0.32, rang-
ing from 0.18 to 0.56. Surprisingly, the overall results
for the second set are slightly better than those of the first
set, however they also exhibit more variability (the system
reaches the score of 0.96 for the disco 2 excerpt while only
attaining a score of 0.25 for the funk 2 excerpt). Overall,
the n-gram expectator outperforms the random expectator
by a factor of approximately 2.

As a side note, it is important to note that among the
runs described, only 51 runs out of 189 led to an accu-
rate estimate of the number of clusters. This shows why
our task requires to effectively integrate uncertainty in our
model and performance metrics.

5. DISCUSSION AND FUTURE WORK

The model is already able to learn aspects of the musical
audio, however we can see that there is room for improve-
ment. It is difficult to compare our results with existing
approaches because few works have focused on the ex-
pectation in both timing and timbre of the attended mu-
sical stream. Overall, we consider the figures presented
here as a baseline for future works in this area. Our sim-
ple N-gram expectation algorithm leads to a weighted F-
measure outperforming the random expectator by a factor

 233

Excerpt n-gram random
disco 2 0.96 0.56
disco 1 0.90 0.44
shuffle 0.79 0.19
rock 1 0.78 0.47
country 0.60 0.36
hard 0.46 0.31
funk 1 0.34 0.22
rock 2 0.31 0.18
funk 2 0.25 0.21

Table 2. Expectation experiment results using the acous-
tic drums recordings set. The post-exposure weighted F-
measure is shown under the following conditions: n-gram
based expectator and uniform random guess.

of approximately two. However, some excerpt are poorly
represented and expected. Further, we are not able to show
a clear relation between N-gram length, number of clus-
ters and expectation results. Overall, we are now able to
compare different expectation algorithms, and we plan to
incorporate in our comparison other types of algorithms
such as recurrent neural networks and multiresolution N-
grams (see Section 1).

On the other hand, the timbre description we have pre-
sented here may be seen as simplistic. We will consider
incrementing the number of timbre features. We will use
data transformation techniques such as Principal Compo-
nent Analysis instead of simple parameter normalisation
to deal successfully with an increased number of descrip-
tors. The next descriptor we plan to include is pitch, that
is, the fundamental frequency extracted over an inter on-
set interval region. This will enable to apply our system
to a wider range of musical signals.

Then, given that real world musical sequences do not
have uniform distributions of instrument and inter-onset
intervals along the whole sequence, it may be preferable
to complete a bootstrap computation in parallel with the
other processes that take place during the running state.
That is, the cluster estimate could be adjusted during the
running state, and would for instance enable to get rid of
unused clusters. We have pointed out that we transcribe
here the audio stream into a symbolic sequence of events,
each of which has a hard assignment to a given cluster.
We aim to operate a move towards sub-symbolic process-
ing by encoding the incoming events with soft cluster as-
signments, in which each event has membership values
associated with each cluster ([20]). We will need to adapt
the expect module to this new representation. Finally, we
will ultimately need to compare the system expectation
with ground truth data instead of the transcription to as-
sess how well the system matches human perception and
expectation.

6. CONCLUSION

We have presented a framework to transcribe, encode, gen-
erate, and synthesise expectations based on constant-tempo
musical audio. First, a review of the existing approaches
related to our work, in the fields of audio transcription,
sequence learning and expectation, and interactive music
systems has been presented. We have then proposed a sys-
tem architecture and detailed each of its components, pre-
senting our main assumptions, and proposing alternatives
to music expectation and generation. Our current imple-
mentation, billabio has been described. We have then pro-
posed an evaluation metric derived from earlier works on
drum transcription that takes into account the stochastic
nature of the unsupervised encoding we use. Experimen-
tal results obtained using different audio recordings have
been shown and a baseline based on random expectation
has been proposed and computed. Finally, we have dis-
cussed our approach and the preliminary results we ob-
tained. Further, we have proposed extensions to overcome
some assumptions presented here. We aim at refining our
approach in order to obtain a system enabling both inter-
action and real-world application for music representation
and expectation models. Sound examples are available on
http://www.iua.upf.edu/∼ahazan/billabio.

7. ACKNOWLEDGEMENTS

This work has been partially funded by the EmCAP project
(European Commission FP6-IST contract 013123).

8. REFERENCES

[1] C. Allauzen, M. Crochemore, and M. Raffinot. Fac-
tor oracle: A new structure for pattern matching.
In Proceedings of the 26th Conference on Current
Trends in Theory and Practice of Informatics on
Theory and Practice of Informatics, pages 295 –
310, 1999.

[2] G. Assayag and S. Dubnov. Using Factor Oracles for
machine Improvisation. Soft Computing, 8(9):604–
610, 2004.

[3] C. M. Bishop. Neural Networks for Pattern Recog-
nition. Clarendon Press, Oxford, 1995.

[4] P. Brossier. Automatic Annotation of Musical Audio
for Interactive Applications. PhD thesis, Centre for
Digital Music, Queen Mary University of London,
London, UK, Sept. 2006.

[5] P. Brossier, J. Bello, and M. Plumbley. Fast labelling
of notes in music signals. In Proceedings of the
5th International Symposium on Music Information
Retrieval (ISMIR 2004), pages 331–336, Barcelona,
Spain, 2004.

[6] A. T. Cemgil. Bayesian Music Transcription.
PhD thesis, Radboud University of Nijmegen, The
Netherlands, 2004.

 234

[7] N. Collins. On onsets on-the-fly: Real-time events
segmentation and categorization as a compositional
effect. In Proceedings of the First Sound and Mu-
sic Computing Conference (SMC’04), Paris, France,
2004.

[8] D. Cournapeau. Pyem, a python package for gaus-
sian mixture models. Technical report, University of
Kyoto, Graduate School of Informatics, 2006.

[9] M. E. P. Davies, P. M. Brossier, and M. D. Plumbley.
Beat tracking towards automatic musical accompa-
niment. In Proceedings of the Audio Engineering So-
ciety 118th convention, Barcelona, Spain, May 2005.

[10] D. Eck and J. Schmidhuber. Learning the long-
term structure of the blues. Lecture Notes in Com-
puter Science, Proceedings of ICANN Conference,
2415:284–289, 2002.

[11] J. Elman. Finding structure in time. Cognitive Sci-
ence, 14(2):179–211, Apr. 1990.

[12] M. Ferrand, P. Nelson, and G. Wiggins. A proba-
bilistic model for melody segmentation. In 2nd In-
ternational Conference on Music and Articial Intelli-
gence (IC-MAI2002), University of Edinburgh, UK,
2002.

[13] O. Gillet and G. Richard. Enst-drums: an extensive
audio-visual database for drum signals processing.
In Proceedings of the 7th International Symposium
on Music Information Retrieval (ISMIR 2006), pages
156–159, October 2006.

[14] J. Hartigan and M. Wong. Algorithm as 136: A k-
means clustering algorithm. Applied Statistics, 28,
1979.

[15] A. Hazan. Billaboop: Real-time voice-driven drum
generator. In Proceedings of Audio Engineering So-
ciety, 118th Convention, 2005.

[16] P. Herrera, A. Dehamel, and F. Gouyon. Auto-
matic labeling of unpitched percussion sounds. In
Proceedings of the 114th Audio Engineering Society
Convention, Amsterdam, The Netherlands, 2003.

[17] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780,
1997.

[18] T. Jehan. Creating Music by Listening. PhD thesis,
Massachusetts Institute of Technology, MA, USA,
Sept. 2005.

[19] O. Lartillot, S. Dubnov, G. Assayag, and G. Bejer-
ano. Automatic modeling of musical style. In Pro-
ceedings of the International Computer Music Con-
ference (ICMC 2001), La Havana, Cuba, 2001.

[20] D. J. C. MacKay. Information Theory, Inference,
and Learning Algorithms. Publisher: Cam-
bridge University Press, 2003. Available from
http://www.inference.phy.cam.ac.
uk/mackay/itila/.

[21] L. C. Manzara and D. Conklin. Comparing human
and computational, 1995.

[22] R. Marxer, A. Hazan, H. Purwins, M. Grachten,
P. Herrera, and I. Salselas. Mock-up of music anal-
ysis system. Technical report, Music Technology
Group, Pompeu Fabra University, 2007.

[23] M. Mozer. Neural network music composition by
prediction: Exploring the benefits of psychophysical
constraints and multiscale processing. Connection
Science, 6:247–280, 1994.

[24] F. Pachet. The continuator: Musical interaction with
style. Journal of New Music Research, 32(3):333–
341, 2003.

[25] J. Paulus and A. Klapuri. Model-based event label-
ing in the transcription of percussive audio signals.
In M. Davies, editor, Proceedings of the 6th Interna-
tional Conference on Digital Audio Effects (DAFx-
03), pages 73–77, London, UK, Sept. 2003.

[26] M. T. Pearce and G. A. Wiggins. Improved methods
for statistical modelling of monophonic music. Jour-
nal of New Music Research, 33(4):367–385, 2004.

[27] C. Raphael. Music plus one: A system for flexi-
ble and expressive musical accompaniment. In Pro-
ceedings of the International Computer Music Con-
ference, La Havana, Cuba, 2001.

[28] D. Rumelhart and J. McLelland. Parallel Distributed
Processing. MIT Press, 1986.

[29] D. Schwarz. Data-Driven Concatenative Sound Syn-
thesis. PhD thesis, Ircam - Centre Pompidou, Paris,
France, Jan. 2004.

[30] G. Schwarz. Estimating the dimension of a model.
The Annals of Statistics, 6(2):461–464, Mar. 1978.

[31] I. H. Witten, L. C. Manzara, and D. Conklin. Com-
paring human and computational models of music
prediction. Technical Report 92/477/15, University
of Calgary, 1992.

 235

