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Abstract  

Information rate (IR) was recently introduced 

as a novel measure of musical structure that 

quantifies prediction properties of musical 

signals. Formulated in information theoretic 

terms, it quantifies the rate of change of 

information in time series, and is related to 

capability of a system to perform information 

analysis of the data, such as actions involved 

in music listening. In this paper we extend IR 

measure to the case of MIDI sequences and 

perform a comparative analysis of audio 

signals (acoustic recordings) and symbolic 

representations (note, i.e. MIDI) of same 

musical piece. We show that in both cases IR 

detects similar types of structure, suggesting 

that IR might capture some inherent properties 

of musical signals.  
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Introduction 
 

Information rate (IR) was introduced  [1] 

as measure of structure of stochastic process, 

defined in terms of relative reduction in 

uncertainty (entropy) due to prediction of the 

future based on the past. Algorithms for 

estimation of IR for audio signals, spectra and 

feature vector sequences were presented. In 

another work  [2], IR was compared to human 

emotional judgments when listening to music, 

suggesting that IR might be related to 

emotions that are evoked in relation to varying 

extents of human ability to anticipate the 

future of music material over the course of a 

musical composition.  

In the current paper we extend IR analysis to 

MIDI sequences by using low order Markov 

models as predictors of note sequences. We 

perform comparative analysis of music using 

both signal and symbolic representations of a 

Bach Prelude (Prelude in G from Well 

Tempered Clavier, Book I). We analyze several 

recordings of different performances of the piece 

and show that IR detects similar types of 

structure. This suggests that IR might be capable 

of capturing some inherent properties of musical 

signals. 

 

Mathematical background 

Mutual information measures the amount 

of information contained in variables 
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where H(.) denotes the entropy of individual 

variables or of a set of variables  [3]. Information 

rate (IR) is defined as the difference between the 

information contained in nxxx ,...,, 21  

versus 121 ,...,, −nxxx , i.e. lacking the last 

observation. In other words IR measures the 

amount of information that is added when next 

variable is observed.  

 

Definition I: 
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It can be shown that IR can be equivalently 

defined in terms of a difference between 

entropies of the data before and after prediction 

Definition II: 
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and also in terms of mutual information 

between signal future and its past 

 

Definition III: 
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Scalar IR Estimators 

 

For Gaussian linear processes, IR can be 

estimated using Linear Prediction and Spectral 

Flatness. Assuming an autoregressive model 

of order p with 

innovations nε ,
1

p

n n i n ii
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= −∑  IR can 

be expressed as logarithm of the ratio between 

variance of the signal and variance of the 

innovation 
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Another estimate of IR is derived using the 

Spectral Flatness Measure  [6], which is 

written in discrete case as the ratio of 

geometric and arithmetic means of the signal 

spectrum, 
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The IR measure was generalized to linear non-

Gaussian processes in  [4]. This can be 

regarded as correction to the standard SFM  

measure and may be used to detect signal 

changes when the innovation higher order 

moments change, even when the prediction filter 

(or signal spectral envelope) remains unchanged. 

 

 

Relation of IR to Change Detection 

 

The purpose of change detection is finding 

points where a current model of a signal no 

longer “explains” the data and a new model has 

to be estimated. One of the common methods for 

comparison of acoustic signals is the Itakura 

Saito (IS) spectral distance  [5], defined as 
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, and 1( )S ω and 

2 ( )S ω are power spectra of two signal segments 

being compared.  Writing IR as a function of 

SFM, we get 
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which after simple algebraic manipulation 

becomes? 
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This shows that IR is equivalent, up to a 

constant factor, to the IS distance between 

the signal and a process with flat spectrum, 

that is white noise. 
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Vector IR  

 

Given a multi-variate distribution of 

vectors 1 2( , ,..., )Tnx x x x= , the multi-

information for sequence of blocks is defined 

as 
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This generalizes the definition of IR to the 

multivariate case  
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Vector IR considers the difference in 
information over L consecutive signal frames 

versus the sum of information of the first L-1 

frames and the information in the last 

frame LX .  

Assuming an expansion of data vectors 

X AS=  in a basis given by columns of the 

matrix A, and independent coefficients S, it 

can be shown  [1] that IR becomes sum of IRs 

of the individual coordinates of the expansion 

coefficients,  
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IR of spectral sequences 

When IR analysis is applied to a sequence of 

spectral vectors, such as vectors of short time 

Fourier transform (STFT) or sequences of 

cepstral coefficients, a rotation of the data 

matrix is performed in order to satisfy 

condition (12). In the case of a multivariate 

Gaussian distribution, independence can be 

achieved using a decorrelation procedure, such 

as the Karhunen-Loeve transform (KLT)  [7], 

also known as Principal Components Analysis 

(PCA). In this paper we are considering sound 

representation in terms of low order cepstral 

coefficients  [8]. Long term correlations related 

to pitch structure are removed from this 

representation by cepstral preprocessing 

(“liftering” step).  

  

 

Notes IR estimation 

 

The principles of IR can be applied to symbolic 

sequences using estimators of entropy and 

conditional entropy over finite alphabet. By 

symbolic representation we mean a 

representation of music as a set of notes, which 

is equivalent to music notation, or performance 

actions of a musician (pianist in our case) who 

performed the piece. This information is stored 

in MIDI files.  In experiments described in this 

paper we considered note numbers 

(corresponding to keys on the piano keyboard) 

sequenced in the order of their appearance but 

disregarding their exact onset times, durations or 

dynamics (so called MIDI velocities). Short time 

estimate of entropy and conditional entropy was 

performed using blocks of 40 notes, with 

overlap of 30 notes between successive blocks. 

The choice of block size was such that the 

duration of the musical segment corresponded 

approximately to three seconds in duration, 

which was the time of analysis of the audio 

signal. Estimation of the marginal entropy in 

every block was performed according to the 

following procedure:  

 

1. Frequencies of appearance of every note in a 

block were obtained by counting the number 

of note appearances divided by the total 

number of notes in the block.  

2. Using these frequencies as probabilities 

, 1..ip i q=  , entropy was estimated using 

the definition  

1 2

1

( ,..., ) log
q

q i i

i

H p p p p
=

=∑ (13), with q 

the range of different notes. 

 

Conditional entropy was estimated in terms of 

low order Markov model, separately for every 

block. In order to maintain a constant number of 

model parameters across different blocks, a 

single prediction table was constructed over the 

whole sequence of the note data (instead of 

constructing separate table for every block). A 
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step of constructing a prediction table was as 

follows: 

 

1. Construct a context table whose entries 

(columns) are vectors containing all note 

sequences of length equal to the Markov 

order used for modeling the piece.  

2. For each context construct a list of 

possible continuations (i.e. single notes 

that follow that context) throughout the 

whole piece (table rows) and compute 

their entropy using the equation (13) using 

frequencies of appearance of notes given 

the context. 

 

Given the table, conditional entropy 

estimation within a block was done as follows: 

 

1. Read the notes in the block from 

beginning to end using a window of size 

equal to the Markov order.  

2. For every window vector look up the 

corresponding entropy value form the 

prediction table.  

3. Sum these individual entropies to obtain 

the conditional entropy for that block.  

 

The note IR is computed as a difference 

between the entropy and the conditional 

entropy. The time step of IR was assigned to 

be the mean time of the note onsets for that 

block.  

 

 

 

 

Experimental results 

 

We present IR analysis of several 

performances of a J.S.Bach Prelude in G from 

the first book of the Well Tembered Clavier. 

In figure 1 we present the evolution of signal 

energy, scalar and vector IR and IS distance of 

a performance of the Bach Prelude by Edwin 

Fischer. It can be seen that IR and IS graphs 

show different responses, indicating that they 

respond to different signal properties. 

Moreover, scalar IR analysis does not give 

meaningful segmentation, but the energy has a 

very prominent profile that outlines musical 

structure and is close to the IR graph. 

 

 
 

Figure 1. Energy, scalar Gaussian, non-

Gaussian and vector IR, and IS distance 

estimation of the Bach Prelude performed by 

Edwin Fischer. 

 

Figure 2 presents similar analysis of a 

performance by Glen Gould. The IR and IS are 

significantly different compared to Fischer’s 

performance. Moreover, the energy and IR are 

almost “opposite”, with higher IR corresponding 

to decrease in energy. 

 

 
Figure 2. Energy, scalar Gaussian, non-Gaussian 

and vector IR and IS distance estimation of the 

Bach Prelude performed by Glen Gould.  

 

A third example is a computer rendering of a 

MIDI file. The piano sounds are derived from an 

internal computer synthesizer, recorded back to 
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the same computer as an audio file. This is the 

most dynamically and rhythmically “flat” 

performance. What is also remarkable is that 

IR and IS profiles are distinct and different 

from the two live performances.  

  

 
Figure 3. Energy, scalar Gaussian, non-

Gaussian and vector IR and IS distance 

estimation of the Bach Prelude as recorded 

from synthetic rendering of the music from 

MIDI file by the computer.  

 

It should be noted that the graphs were scaled 

so as to fit over the spectrogram in the 

background. The axes of the plot correspond 

to the spectrogram units. The scaling of the 

analysis function in the plot are as follows: 

energy and spectral anticipations are scaled to 

80% of Nyquist frequency, the scalar Gaussian 

and non Gaussian IR are normalized to be less 

or equal to 1 and scaled also to 80% of 

Nyquist frequency, and IS distance is scaled to 

20% of Nyquist frequency (without 

normalization). 

  

 

 

Results of IR Analysis of symbolic music 

representation  

 

Figure 4 shows graphs of note entropy, 

conditional entropy and their difference (IR), 

plotted under a graph that shows note 

occurrences in the Prelude. The y-axis 

corresponds to MIDI note numbers, and the x-

axis is the time. The values of entropy were 

scaled so as to show conveniently under the 

score and do not have an absolute meaning in 

this graph.  

It can be seen that entropy of the piece is rather 

flat throughout its duration, which indicates that 

statistics such as range and frequency of 

occurrences of notes in different musical 

sections do not provide much information about 

what is “really” going on. 

 

 
Figure 4. Graphs of note entropy, conditional 

entropy and their difference (IR), plotted under 

a graph that shows occurrence of note onsets 

of the Prelude. The y-axis corresponds to note 

numbers of the MIDI file. 

 

Conditional entropy decreases towards the end 

of the piece, indicating that the predictability of 

the music increases (less bits needed to describe 

the next note in context of its past).  

In order to evaluate the significance of IR for the 

different music representations, we have 

compared note and spectral anticipations from 

MIDI and the synthetically rendered audio files, 

respectively. The two graphs are shown in figure 

5.  
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Figure 5. Energy, scalar Gaussian, non-

Gaussian and vector IR and IS distance 

estimation of the Bach Prelude as recorded 

from synthetic rendering of the music from 

MIDI file by the computer.  

 

It is interesting to observe that although the 

signals and their respective statistical models 

were very different, the IR graphs exhibit 

significant similarity. The signal IR graph was 

scaled so as to match the range of the note IR 

values. The background of the figure shows 

again the notes onsets, but this time without 

relation to the y-axis.  
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