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Abstract 
The direct C–H bond functionalization has been one of the most active research fields in organic 
chemistry not only due to the significance in basic studies of inert C–H bond chemistry but also due 
to the step economy feature in potential synthetic application. In the past decades, transition-metal-
catalyzed direct and selective functionalization of C–H bonds has emerged as a straightforward and 
environmentally friendly synthetic tool, which is also a long-standing goal that continues to drive 
discovery in organic synthesis. The precious late transition metals have been proved to play key 
roles to facilitate highly efficient transformations through C-H functionalization. However, the 
relatively high price, low natural abundance and partly strong toxicity limited their application. 
Nickel, compared to precious transition metals, is showing great potential for C–H bond 
functionalizations because of its low cost, unique reactivity profiles and easy availability in the 
earth’s crust. This tutorial review summarizes the recent advances in nickel-mediated direct C–H 
bond functionalizations and C−C bond forming reactions.     
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1. Introduction 
 
Direct functionalization of unactivated carbon-hydrogen (C-H) bonds has been a focal point of 
experimental and theoretical research and plays an important role among these synthesis routes.1-7 A 
relatively inert C–H bond is activated, and the hydrogen atom acts essentially as a leaving group. 
This technology allows one to bypass the installation and subsequent removal of classical leaving 
groups and to reduce wastes as well as some precautions (such as protecting group manipulations) 
typical in the handling of promiscuous amine reagents. While developing a capable reactant or 
catalyst system that is chemo-, regio-, and stereoselective is highly challenging, various researchers 
have made significant contributions to this field.8-15 In the past decades, transition-metal-catalyzed 
direct and selective functionalization of C–H bonds has emerged as a straightforward and 
environmentally friendly synthetic tool, which is also a long-standing goal that continues to drive 
discovery in organic synthesis. Thus research on this subject has been attracting increasing interest 
amongst organic chemists, and various high efficiency and versatile protocols have been 
explored.16,17 

In 2006, a simpler vision on the most common C-H bond functionalization mechanisms was 
provided by Sanford who described these as “inner-sphere” and “outersphere” mechanisms 
(Scheme 1).18-20 As defined by Sanford, the “inner-sphere” mechanism comprises two steps that 
involve the cleavage of the C-H bond leading to the formation of a transition metal alkyl or aryl 
derivative and the functionalization of this intermediate by an external reagent (or the metal center) 
to lead to final product. Concerning the “outer-sphere” mechanism, the first species formed is a high 
oxidation state metal complex containing an activated ligand. This reactive species can evolve by 
two different pathways, one is the direct insertion in the C-H bond and the second is a hydrogen 
atom abstraction/radical rebound furnishing the C-H bond functionalization product. 
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Scheme 1 
 

In the past decades, most attention has been paid to the development of late transition metals, 
mainly due to some advantages in terms of the diversity and tunability of the catalysts and their 
robustness. The precious late transition metals, for example, palladium, ruthenium, rhenium and 
iridium catalysts have been shown to be effective for this catalytic system and have been proved to 
play key roles to facilitate highly efficient transformations through C-H activation. However, the 
relatively high price, low natural abundance and partly strong toxicity limited their application. 
Nickel is an abundant 1st row transition metal found in group 10 of the periodic table. Nickel 
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contains ten d-electrons in a neutral Ni(0) species and can exist in a variety of oxidation states 
Ni(0)–Ni(IV), the lower oxidation states Ni(0) and Ni(II) are the most common, while Ni(I) and the 
higher oxidation states Ni(III) and Ni(IV) are quite rare.21 Nickel compared to precious late 
transition metals, is easily available in the earth’s crust. In spite of showing great potential in the 
direct C–H bond functionalizations because of its low cost and unique reactivity profiles, the metal 
is comparatively underutilized.22 During the past several years, an increasing number of nickel 
catalyzed C–H functionalizations have appeared in the literature. This review will discuss recent 
discoveries in nickel-catalyzed C-H bond functionalized reactions and highlight the scope and the 
mechanism of these reactions. 
 
 
2. Csp1-H Bond Functionalizations 
 
Carbon–carbon bond-formation reactions are among the most important processes in chemistry 
because they enable key steps in building more complex molecules from simple precursors. In the 
past several years, Nickel-catalyzed functionalization of C–H bonds for constructing new C-C 
bonds has emerged as a straightforward and environmentally friendly synthetic tool, which is also a 
long-standing goal that continues to drive discovery in organic synthesis. 

Samai et al23 developed an efficient NiCl2-catalyzed one pot coupling of aldehydes, amines 
afforded a diverse range of propargylamines in up to 95% yields (Scheme 2). The reaction had high 
atom efficiency, since water is the only byproduct. A possible mechanism (Scheme 3) was proposed 
for the probable sequence of events involving the activation of the C–H bond of alkyne 3 by NiCl2. 
The nickel–acetylide intermediate 4 generated by the reaction of acetylene and NiCl2 reacted with 
the iminium ion 5 (generated in situ from aldehyde 1 and amine 2) to give the corresponding 
propargylamine 6. 
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Scheme 3 
 
 
3. Csp2-H Bond Functionalization 
 
In 2006, Liang et al24 have reported an efficient intermolecular arene C-H activation protocol 
mediated by Ni(II) complexes under mild conditions. These studies directed to describe the reaction 
mechanism and reactivity with applicable hydrocarbons are currently underway. Later, Muto et al25 
studied mechanistic of a C−H/ C−O biaryl coupling of 1,3-azoles and aryl pivalates using 
Ni(cod)2/dcype as catalyst. This study not only supports a catalytic cycle consisting of C−O 
oxidative addition, C−H nickelation, and reductive elimination but also provides insight into the 
dramatic ligand effect in C−H/C−O coupling. Investigations on kinetic studies and kinetic isotope 
effect disclose that the C−H nickelation is the turnover-limiting step in the catalytic cycle. 
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Scheme 4 
 
3.1. Aldehydes of C–H activation 
Nakao and coworkers26 developed regioselective hydrocarbamoylation of alkenes mediated by 
nickel/Lewis acid cooperative catalysis (Scheme 5). This catalytic system achieved the 
exceptionally high regioselectivity and would be highly useful as a protocol to access variously 
functionalized amides as well as a novel transformation of anti-Markovnikov selective 
functionalization of alkenes. The proposed catalytic cycle was shown in Scheme 6. Formamides 
coordinating to the Lewis acid catalyst through their carbonyl oxygen would undergo the oxidative 
addition of the C(sp2)-H bond to a nickel(0) species to give nickel hydride 8 via the formation of 2-
formamidenickel intermediate 7. Alkenes coordinate to the nickel center of 8 to form 9, which 
undergoes migratory insertion to give alkylnickel 10. Reductive elimination followed by ligand 
exchange reactions provides alkanamides and regenerate 7 to complete the catalytic cycle. 
 



Reviews and Accounts  ARKIVOC 2015 (i) 184-211 

Page 188 ©ARKAT-USA, Inc 

R1

N H

O

R2
R3+

Ni(COD)2 (5 mol%)

toluene, 100 °C, 2-26h
AlEt3 (20 mol%)

IAd (5 mol%) R1

N R3

R2

O
N N

..
IAd(1.0 mol) (1.5 mol)

R1, R2 = (Et, Et), R3 =  CH3(CH2)10,  69%;;                  R1, R2 = (Me, Bn), R3 =  CH3(CH2)10,  68%

R1, R2 = (Bn, Bn), R3 =  CH3(CH2)10,  75%;                 R1, R2 = (Me, Ph), R3 =  CH3(CH2)10,  13%

R1, R2 = (Me, Me), R3 =  t-BuSi(Me)2O(CH2)3,  77%;   R1, R2 = (Bn, Bn), R3 =  t-Bu  13%

R1, R2 = (Me, Me), R3 =  t-BuCOO(CH2)3,  59%;          R1, R2 = (Bn, Bn), R3 =  t-Bu  59%

R1, R2 = (Bn, Bn), R3 =  (Me)3Si,  59%;                        R1, R2 = (Bn, Bn), R3 =  Ph, 59%

R1, R2 = -(CH2)5-, R3 =  CH3(CH2)10,  65%;                 R1, R2 = -(CH2)O(CH2)2-, R3 = CH3(CH2)10,  53%

Bn
N

O

Ph

10

81%; >95ee

Bn
N

O

Ph

10

78%; >95ee

Me
N

Me

O

90%  
 

Scheme 5 
 

O AlEt3

Ni

L 7

N Ni
H

O AlEt3

L

N Ni
H

O AlEt3

L R3

N Ni

AlEt3

L R3

H

R1

N H

O

R2

R1

N R3

R2

O

R3

L = IAd

8

9

10

 
 

Scheme 6 
 

In 2011, Hiyama and co-workers27 made a significant achievement for the development of 
cycloaddition of formamides and alkynes through activation of both C(sp2)-H and C(sp3)-H bonds 
(Scheme 7). Hiyama et al.28 originally discovered a nickel catalyst system that facilitates 
hydrocarbamoylation of unsaturated bonds such as alkynes (Scheme 8 cod=cyclooctadiene). This 
study reveal that Lewis acid plays a critical role in activating the formamides towards C(sp2)-H 
activation.29,30 With this Lewis-acid assistance, [Ni] oxidatively adds the C(sp2)-H bond of the 
formamide. Alkyne insertion followed by C-C bond-forming reductive elimination provides highly 
substituted acrylamides. 
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Scheme 9 
 

Building upon this work, Hiyama and co-workers31 found N,N-bis(1-arylalkyl) formamides not 
only undergo the Lewis acid-assisted oxidative addition of the formamide C(sp2)-H bond, the 
resultant nickel intermediate inserts an alkyne and undergoes a second C-H activation (Scheme 9). 
That is, intermediate 13 converts to intermediate 14 through cyclometalation of the alkyl C(sp3)-H 
bond and extrusion of a reduced alkyne (i.e., an alkene). Although this type of cyclometalation is 
prevalent for platinum metals, cyclometalation on nickel is much less prevalent.32-34 In addition, 
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examples of Ni-based cyclometalation has been mainly limited to the activation of C(sp2)-H 
bonds.35,36 In contrast this nickelacycle 14 inserts a second alkyne and reductively eliminates the 
dihydropyridone product to complete the catalytic cycle. 

The work of Hiyama and co-workers is certainly an outstanding contribution in the field of 
cross-dehydrogenative coupling. Key to their success was an optimal steric environment around the 
metal center to promote cyclometalation/ dehydrogenative coupling. These findings mark the entry 
of a cheaper, first-row transition metal catalyst nickel in mediating C-C bond formation through the 
challenging C(sp3)-H activation. 
 
3.2. Olefin and aromatic C–H activation 
In 2008, Tekavec and Louie37 developed the cycloisomerization of enynes to afford 1,3-dienes 
using the combination of Ni(0) and an N-heterocyclic carbene acted as a precatalyst (Scheme 10). 
During the course of the reaction, a nickel hydride was formed from oxidative addition of the ortho 
C–H on the carbene ligand. In mechanism A (Scheme 11), the enyne undergoes oxidative coupling 
with the Ni(0) catalyst to generate a metallacyclopentene. This metallacyclopentene undergoes β-
hydride elimination to provide a vinyl nickel hydride. Then the vinyl nickel hydride reductively 
eliminates to yield the observed 1,3-diene. Alternatively, in mechanism B (Scheme 11), the alkyne 
component of the enyne undergoes hydrometalation with a Ni–H complex to produces a vinyl 
nickel species. The pendant olefin then inserts into the vinyl nickel bond thereby forming an alkyl 
nickel species. β-Hydride elimination and reductive elimination affords the observed 1,3-diene. The 
combination of Ni(cod)2 and IDTB catalyzes the cycloisomerization of enynes to synthetically 
valuable cyclic 1,3-dienes. Deuterium labeling studies suggest that the active catalyst species is a 
Ni–H species generated via a rare Ni(0) C–H activation. 
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Yoshida et al38 developed a nickel-catalyzed cycloaddition of α,β-unsaturated oximes with 
alkynes to afford 2,3,4,6-tetrasubstituted pyridine derivatives (Scheme 12 and 13). The reaction 
involved oxidative addition of the NO bond of α,β-unsaturated oximes to Ni(0) and subsequent 
alkyne insertion to an N-Ni bond, followed by intramolecular cyclization. It was also found that α,β-
unsaturated oximes participate in the nickelcatalyzed reaction with alkynes to furnish pyridine 
derivatives. Based on the results, a proposed reaction pathway was show in Scheme 14. The 
oxidative addition of an oxime NO bond to an Ni(0) complex initiated the reaction, followed by 
insertion of an alkyne into an N-Ni bond to generate intermediate 17. The subsequent 
intramolecular insertion of the olefin produces intermediate 18. The methoxy ligand on the nickel 
would then be replaced with i-PrOH to provide 19. This ligand-exchange reaction of intermediate 
18 with i-PrOH to lead to intermediate 19 is the rate-determining step in the catalytic process. β-
Hydride elimination will give 20, and a second β-hydride elimination, with aromatization of the six-
membered heterocycle, would provide pyridine 21. 
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In 2011, Ogata and coworkers39 reported a diastereoselective three-component coupling reaction 
between aryl aldehydes, norbornenes (norobornadiene), and silanes leading to silylated indanol 
derivatives using a [Ni(cod)2]/N-heterocyclic carbene catalyst system (Scheme 15). This was the 
first example of a nickel-catalyzed reductive three-component reaction involving aromatic C-H 
bond activation of aryl aldehydes. A possible pathway for the three-component reaction is shown in 
Scheme 16. 
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In 2013, Yoshinori and Naoto40 described the alkylation of the ortho C–H bonds in benzamides 
and acrylamides containing an 8-aminoquinoline moiety as a bidentate directing group with 
unactivated alkyl halides using nickel complexes as catalysts in good yields (Scheme 17). The 
reaction showed high functional group compatibility. In reactions of meta-substituted aromatic 
amides, the reaction smoothly proceeds in a highly selective manner at the less hindered C–H bond. 
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Nakao et al41 found a Ni catalyst for the activation of C-H over C-F bonds of polyfluoroarenes 
and demonstrated their direct alkenyl- and alkylation to allow efficient synthesis of a variety of 
polyfluoroarenes having alkenyl and alkyl groups in regio- and stereoselective manners (Scheme 
18). Experimental and theoretical mechanistic studies determine the origin of the dramatic ligand 
effect on the Ni catalysis for C-H activation of polyfluoroarenes. 
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In 2010, Johnson and coworkers42 reported the nickel-catalyzed reaction of fluorinated arenes 
and pyridines with vinyl stannanes does not provide the expected vinyl compounds via C-F 
activation but rather provides new Sn-C bonds via C-H functionalization with the loss of ethylene 
(Scheme 19). Unlike the B-C bonds used in the Miyaura-Suzuki coupling reaction, which are 
readily obtained via direct borylation of C-H bonds, the reaction provides a novel unanticipated 
methodology for the direct conversion of C-H bonds to carbon-heteroatom bonds. 
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Later, Mao and coworkers43 reported Ni(OAc)2·4H2O could catalyze the direct C–H arylation of 
unactivated arenes with aryl halides in presence of 1,10-phenanthroline without using additives 
(Scheme 20). This protocol provides more useful C–H arylation via activation of aromatic C-H 
Bond. Shiota et al44 achieved the first example of the Ni-catalyzed transformation of ortho C-H 
bonds utilizing chelation assistance and realized the regioselective oxidative cycloaddition of 
aromatic amides to alkynes (Scheme 21 and 22). 
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In 2013, Lei and coworkers45 developed the aromatic C–H alkylation with tertiary or secondary 
alkyl–Br bonds for the construction of indolones using nickel catalysis (Scheme 23). Various 
functional groups were well tolerated in the reaction. Moreover, the challenging secondary alkyl 
bromides were well introduced in this transformation. Radical trapping and photocatalysis 
conditions exhibited that it is most likely to be a radical process for this aromatic C–H alkylation. 
 

P P
Ph

Ph

Ph

Phdppp =

N
Br

R3

O

R1 R2 Ni(PPh3)4 (5mol%)

dppp (6 mol%l)

K3PO4

toluene, 100 oC, 24 h

N
O

R3

R1 R2
R

R

R1, R2, = H, Me; R3 = Me, Bn

R = H, N(Me)2, MeO, CH3CO, CN, 
       Me, CF3,NO2, Cl, F, Br, I, etc.

44-96%

 
 

Scheme 23 
 
3.3. Heteroaromatic C–H activation 
A pyridine core plays a key role in a number of natural products, pharmaceuticals and functional 
materials. Because a wide variety of pyridine derivatives are available, a strategy to install 
substituents directly into a preformed pyridine core has advantages in terms of step economy as well 
as versatility. In 2010, Nakao et al46 achieved the direct C-4-selective alkylation of pyridines using 
nickel/Lewis acid cooperative catalysis with an N-heterocyclic carbene ligand (Scheme 24). In this 
reaction, a variety of substituents on both alkenes and pyridine are tolerated to give linear 4-
alkylpyridines in modest to good yields. The addition across styrene, on the other hand, gives 
branched 4-alkylpyridines. These results imply a catalytic cycle initiated by oxidative addition of 
the C(4)-H bond of pyridine coordinating to MAD, which is kinetically favored over that of the 
C(2)-H and C(3)-H bonds, through η2-arene nickel species 24 (Scheme 25). Coordination and 
migratory insertion of alkenes into the Ni-H bond of nickel(II) intermediate 25 takes place to give 
alkylnickel 26 through 25, and subsequent reductive elimination gives C-4-alkylated pyridines 28 
and regenerates 24. 
 

N
R1

(1.0 mmol)

+ R2

(1.5 mmol)

{Ni(cod)2] (5 mol%)

toluene, 130 °C, 3-23 h

IPr (5 mol%)

MAD (20 mol%)

N
R1

R2

N
R1
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+

MAD = (2,6-t-Bu2-4-Me-C6H2O)2AlMe

R1 = H, Me, 2,6-2Me, 3-CO2Me

R2 = C11H23, CH2Ph, (CH2)3OSiMe2t-Bu, (CH2)3OPiv,

(CH2)2CH=CH2, cyclohexen-4yl, SIMe3, Ph

22 23
 up to 95% yield (3 + 3')

22 : 23 up to > 95 : 5

N
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+

(3 mmol)

PrPr

{Ni(cod)2] (5 mol%)

toluene, 110 °C, 5 h

IMes (5 mol%)

AlMe3 (20 mol%)

N

Pr
N

Pr

Pr

Pr

+

 53% 15%  
 

Scheme 24 
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Scheme 25 
 

The imidazole ring is an important structural motif encountered in numerous biologically active 
compounds ranging from natural products to pharmaceuticals.47 In 2009, Nakao and coworkers48 
found Nickel/Lewis acid binary catalysis was effective to direct regioselective alkenylation of 
imidazoles through C–H bond activation and stereoselective insertion of alkynes (Scheme 26 and 
27). Use of P(t-Bu)3 as a ligand allowed exclusive regioselective C(2)-alkenylation, while PCyp3 
was found effective for C(5)-alkenylation of C(2)-substituted imidazoles. Results of the reaction 
revealed a broad scope of imidazoles and internal alkynes to give trisubstituted ethenes with highly 
regio- and stereoselectivities in modest to good yields. 
 

N N

H

R2

R1 R4R3+

Ni(COD)2 (3 mol%)

P(t-Bu)3 (12 mol%)

toluene, 100 °C, 2-26h
AlMe3 (6 mol%)

N N

R2

R1

R4

R3
(3.0 mol)

(1.0 mol)

R1 = PhCH2, R2 = H, R3 = R4 = Pr,  63%, E/Z = 93:7

R1 = Ph, R2 = H, R3 = R4 = Pr,  42%, E/Z = 92:8

R1 = Me, R2 = Ph, R3 = R4 = Pr,  63%, E/Z = >99:1

R1 = Me, R2 = H, R3 = R4 = Ph  75%, E/Z = <1:99

R1 = Me, R2 = H, R3 = R4 = 4-MeOC6H4 53%, E/Z = <1:99

R1 = Me, R2 = H, R3 = Ph, R4 = SiMe3, 69%, E/Z = 20:80

R1 = Me, R2 = H, R3 = Hex, R4 = SiMe3, 60%, E/Z = >99:1  
 

Scheme 26 
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N N

R1

Me R4R3+

Ni(COD)2 (3 mol%)

P(t-Bu)3 (12 mol%)

toluene, 100 °C, 2-26h
AlMe3 (6 mol%)

N N

R1

Me

(3.0 mol)

(1.0 mol)

R1 = Ph, R3 = R4 = Pr,  8%, E/Z = >95:5

R1 = Me, R3 = Hex, R4 = SiMe3, 63%, E/Z = >95:5

H
R3

R4

R1 = Me2Sit-Bu, R3 = R4 = Pr,  42%, E/Z = 96:4

R1 = Me, R3 = Me R4 = i-Pr, 75%, E/Z = >95:5

R1 = Me, R3 = Me, R4 = t-Bu 71%, E/Z = >95:5  
 

Scheme 27 
 

Nakao, Hiyama and coworkers49 demonstrated the nickel-catalyzed hydroheteroarylation of 
vinylarenes to exclusively give a variety of 1,1-diarylethanes that contain a heteroaryl motif 
(Scheme 28 and 29). The use of relatively electron-poor heteroarenes in this reaction is 
complementary to the well documented Friedel–Crafts-type hydroarylation of vinylarenes with 
electron-rich arenes to give a wide variety of 1,1-diarylethanes. A plausible catalytic cycle that is 
initiated by reversible oxidative addition of an Ar-H bond to the nickel(0)/IMes catalyst to give 
nickel hydride 33 through η2-arenenickel 32 (Scheme 30). The coordination of vinylarenes 34 and 
subsequent hydronickelation are both reversible and give 1-arylethylnickel 36, that reductively 
eliminates 1,1-diarylethanes irreversibly to regenerate 32. The final step could be the rate-
determining step, as has been discussed previously for the nickel-catalyzed hydrocyanation50 and 
hydroalkynylation51 of vinylarenes. The primary reaction pathway could compete with the 
coordination and migratory insertion of alkenes to give 1,2-diarylethanes via 35 and 37. 
 

N
Me

CO2Me

Ar

(1.0 mmol)

(1.5 mmol)

+

[Ni(COD)2] (5 mol%)

IMes (5 mol%)

i-PrOH(5equiv)
hexane, 130 °C, 2-32 h

N
Me

CO2Me

Ar

up to 100% yield

Ar = Ph, substitued Ph, 2-naphthyl, C11H23, etc.

N N..

IMes

 
 

Scheme 28 
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heteroarene   + Ph Ph

HetAr

N
Me

COMe

Ph
89%
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CN

Ph
85%

N

N
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86%
O

N
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97%

O

N

Ph
41%

S

N

Ph
81%

O Ph
77%  

 
Scheme 29 
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Scheme 30 
 

Qu et al52 developed a useful process for nickel-catalyzed direct sp2 C–H bond arylation of 
purines at room temperature in good yields (Scheme 31). This reaction was the first example that 
uses Grignard reagent as the coupling partner to perform direct sp2 C–H bond arylation of N-
aromatic heterocycles without a directing group. This approach provided a new access to a variety 
of C8-arylpurines which are potentially of great importance in medicinal chemistry. A possible 
mechanism that accounts for C–H bonds arylation of purine with Grignard reagents is presented in 
Scheme 32. Combination of 38 and Ni(dppp)Cl2 provides the metalated intermediate 39. 
Subsequently, an (aryl)-nickel(II) intermediate 40 is generated by transmetalation between aryl 
Grignard reagent and the metalated intermediate 39. Followed by reductive elimination to produce 
the desired product 41, the Ni(0) species 42 is generated, which is reoxidized to Ni(II) species by 
DCE to complete the catalytic cycle. 

 

{Ni(dppp)Cl2] (30 mol%)

N

N N

N

R1

R2

R3

+  ArMgBr
DCE (3 equiv)

N2, THF, r.t., 5 h

N

N N

N

R1

R2

R3

Ar

R1 = OMe, Ph, Bn, Cl, Benzylthio

R2 = H, Cl

R3 = Bn, Phenethyl, Me, Et, n-Pr, cyclopentyl, n-Bu

(1 equiv)
(8 equiv)

Ar = 3-MeC6H4, 4-MeC6H4, 4-MeOC6H4, 4-EtC6H4,3,5-2MeC6H4, 4-PhC6H4, 2-MeC6H4

41-91%

 
 

Scheme 31 
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Scheme 32 
 

Itami and coworkers53 described the C–H bond arylation of azoles with phenol derivatives 
including esters, carbamates, carbonates, sulfamates, triflates, tosylates, and mesylates using a 
Ni(cod)2/dcype catalytic system (Scheme 33). The reaction provided the synthesis of a series of 
privileged 2-arylazoles including biologically active alkaloids, and the functionalizing estrone and 
quinine were obtained in 52% and 42% yield. 

 

Z

N
H

Z = O, S
(0,4 mmol)

RO Ar+

R = COt-Bu, Tf

(1.5equiv)

Ni(cod)2 (10 mol%)

dcype (20 mol%)

Cs2CO3 (1.5 equiv )

1,4-dioxane, 120 °C,  12 h

Z

N
Ar

Ar = Ph, substitued Ph, naphthyl, pyridyl, quinolinyl etc.

42-99%

O

N
Ph

Me

H

H

O

52%
N

N

O
N

OH

42%

 
 

Scheme 33 
 

In 2012, Iaroshenko et al54 reported the arylation of imidazo[4,5-b]pyridines known as 1-
deazapurines catalyzed by transition-metal (Scheme 34). 1-Deazapurines were generated from 5-
aminoimidazoles by the reaction of methyl N-(cyanomethyl)formimidate with primary amines. 
Later, Qu and coworkers55 developed a method for nickel-catalyzed direct sp2 C–H bond alkylation 
of N-aromatic heterocycles using a Grignard reagent as the coupling partner (Scheme 35 and 
Scheme 36). In this process, a variety of alkylated N-aromatic heterocycles with potentially of great 
importance in medicinal chemistry were obtained under mild condition. 

 



Reviews and Accounts  ARKIVOC 2015 (i) 184-211 

Page 200 ©ARKAT-USA, Inc 

N

MeO

CN

1) R1 NH2

CH2Cl2, reflux

F3C R2

O O

2)
reflux

N

N

N
R1

CF3

R2

R1 = tBu, R2 = Me, 69%                               Ar = 3-CF3C6H4   X = Br, 88%

R1 = Cyclohexyl, R2 = Ph, 70%                    Ar = 2-FC6H4       X = Br, 92%

R1 = PhCH2CH2, R2 = 2-Thienyl, 75%          Ar = Ph                X = Br, 94%

R1 = p-methoxybenzyl, R2 = 2-Furyl, 75%   Ar = 4-CH3C6H4   X = I,   93%

ArX, K2CO3

NiCl2(PPh3)2

DMF, 110 °C

N

N

N
R1

CF3

R2
Ar

 
 

Scheme 34 
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DCE (3 equiv)

N2, THF, r.t., 24 h N

N

R

Alk
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Alk = Bn, CH3(CH2)4

47%-82% yield

P P
Ph

Ph
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Scheme 35 
 

N

N N

N

R

+ Alk MgBr

Ni(dppp)Cl2 (20 mol%)

DCE (3 equiv)

N2, THF, r.t., 24 h N

N

R

Alk

R2 = Bn, cyclo-Pentyl, Me, Et

Alk = Bn, CH3(CH2)4, CH3CH2,

53%-94% yield

R1

R1 = MeO, Cl, 4-EtC6H4

 
 

Scheme 36 
 

In early 2012, Itami et al56 disclosed a C-H arylation of azoles with C-O electrophiles, catalyzed 
by the combination [Ni(cod)2]/dcype (cod=1,5-cyclooctadiene, dcype=1,2-bis-
(dicyclohexylphosphino)ethane) (Scheme 37). This catalyst system was highly efficient for the 
coupling of esters, carbamates, sulfamates, triflates, tosylates, and mesylates with several 
compounds with an acidic C-H group, such as benzoxazoles, oxazoles, benzothiazoles, and 
thiazoles. Not surprisingly, the use of simpler alkyl ethers (C-OMe) as electrophiles did not give 
any conversion at all, thus illustrating the greater inertness associated with the C-OMe bond.57-60 
Interestingly, the coupling of benzoxazole with phenyl thiophene-2-carboxylate did not give the 
expected C-H/C-O coupling process, but the formation of the corresponding bis(heteroaryl) 
backbone. In the reaction, a wide variety of heteroaromatic phenyl esters, including furans, 
thiophenes, pyridines, thiazoles, and quinolones were smoothly coupled with benzoxazoles, 
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oxazoles, and thiazoles, to access bis(heteroaryl) motifs in a straightforward fashion. The authors 
reasonably speculated that the decarbonylative C-H arylation protocol involved a Ni0/NiII catalytic 
cycle (Scheme 38).61 This novel C–H arylation reaction was successfully applied to a convergent 
formal synthesis of natural product muscoride A with exceptional antibacterial activity (Scheme 
39). 
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Scheme 39 
 

The novel decarbonylative C-H arylation reported by Itami et al. will open up new opportunities 
and stimulate the development of new concepts and ideas within the field of Ni-catalyzed reactions, 
which is probably one of the most vibrant and promising branches of current research in organic 
and organometallic chemistry.62 

Transition metal catalyzed alkenylation is one of the most reliable methods for making alkenyl-
substituted arenes as exemplified by the Mizoroki–Heck reaction.63 In 2013, Yamaguchi and 
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coworkers64 developed Ni/dcype catalyzed C-H/C-O alkenylation and decarbonylative C-H 
alkenylation two novel C-H alkenylations of azoles (Scheme 40). These newly developed azole 
alkenylation reactions were successfully applied to the convergent formal synthesis of siphonazole 
B.65 
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130 °C, 12-36 h
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R = Ph. 4-MeOC6H4,  3,4-2MeOC6H4, 2-MeC6H4,

2-thienyl, 3-oxazyl, Me, Et, etc.  
 

Scheme 40 
 

Recently, Zhang, Ge and coworkers66 developed an efficient Ni-catalyzed ligand-free direct 
decarboxylative acylation of azole derivatives by means of sp2 C-H bond functionalization with 
good to excellent yields (Scheme 41). This transformation is the first example of decarboxylative 
cross-coupling reactions using Ni catalysis by a C-H bond functionalization pathway, and provides 
an useful complementary protocol to access important heteroaryl ketone derivatives in the field of 
synthesis and medicine. 
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4. Csp3-H Bond Functionalizations 
 
Direct functionalization of unactivated C(sp3)–H bond has been a focal point of experimental and 
theoretical research and play important roles among these synthesis routes. In recent year, more 
attention has been paid to the development of nickel catalysis directly catalyse C(sp3)–H 
functionalization and achieve some challenging research results. 

Catalytic asymmetric cross-dehydrogenative coupling reaction (CDC reaction) has attracted 
great attention because it provides efficient methods to construct versatile and useful building 
blocks.67-73 Under oxidative conditions, two C–H bonds could be directly coupled to form a new C–
C bond without prior installation of functional groups. In 2013, Feng group74 developed catalytic 
asymmetric cross-dehydrogenative coupling of β-ketoesters and xanthene using a cooperative 
bimetallic catalyst system (Scheme 42). Various optically active xanthene derivatives bearing a 
quaternary stereogenic carbon center were obtained in up to 90% yields  with up to 99% ee under 
mild conditions. 
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Scheme 42 
 

Lei and coworkers75 demonstrated the nickel-catalyzed oxidative arylation of C(sp3)-H bonds in 
moderate to good yield (Scheme 43-45). Several substituted arylboronic acids and various C(sp3)-H 
bonds were approved to be suitable substrates for this novel transformation. This process provides 
an effective method for the introduction of simple ether derivatives to synthese α-arylated ethers. 
Preliminary mechanistic studies suggest that this reaction possiblly proceed through a radical 
pathway. 
 

Ar B(OH)2 +
O

H O
Ar

[Ni(acac)2] (10 mol%)

PPh3 (10 mol%)

K3PO4 (1.0 equiv)
DTBP (1.0 equiv)
100 °C, 16 h

Ar                   Yield(%)        Ar                   Yield(%)

Ph                      88              4-MeOC6H4       93

4-CH3COC6H4   78              4-CF3C6H4        52

4-FC6H4             86              4-ClC6H4           84

2-CH3C6H4        84              nathph-2-yl        52  
 

Scheme 43 
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Scheme 45 
 

In 2014, You76 disclosed the nickel-catalyzed unactivated β-C(sp3)–H bond arylation of 
aliphatic acid derivatives with aryl iodides/bromides via bidentate chelation-assistance of an 8-
aminoquinoline moiety (Scheme 46). These preliminary results in the reaction indicate the intrinsic 
catalytic potential of nickel metal for unactivated C(sp3)–H bond arylation. Ge77 developed a a 
nickel-catalyzed sp3 C-H bond functionalization process for site-selective intramolecular 
dehydrogenative cyclization reaction of 2,2-disubstituted propionamides (Scheme 47). The reaction 
suits to the C-H bonds of β-methyl groups over the γ-methyl or β-methylene groups. Additionally, a 
predominant preference for the β-methyl C-H bonds over the aromatic sp2 C-H bonds was observed. 
Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C-H 
bonds. Naoto78 still reported the similar studies on the direct arylation of C-(sp3)−H (methyl and 
methylene) bonds in aliphatic amides containing an 8-aminoquinoline moiety as a bidentate 
directing group with aryl halides catalyzed by Ni catalysis. 
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In 2014, Gartia et al79 described the catalytic coupling of Grignard reagents with the C–H bond 
of oxygen containing heterocyclic compounds such as tetrahydrofuran catalysed by nickel(II) 
complex (Scheme 48). The nickel(II) complex showed excellent activity in catalyzing C–H 
activation and further coupling with various Grignard reagents. The effective activation of the C–H 
bond proceeded under ambient reaction conditions with a short reaction time (1–2 h) and catalyst 
loading as low as 0.01 mol%. This catalytic route could prove to be an efficient method for the 
preparation of synthetically and pharmaceutically relevant molecules  by activation of sp3 C–H 
bonds in various heterocycles. 
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5 Conclusions 
 
Over the past decades, there has been an explosive growth in the development of methods for C–H 
functionalization and the application of these technologies for the synthesis of complex targets such 
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as natural products and pharmaceutical agents. Various nickel salts or complexes are extensively 
used as catalyst for these reactions due to their high efficiency and low cost. This review presented 
an overview of the area of nickel-catalyzed direct C–H bond functionalizations and C−C bond 
forming reactions via Csp–H, Csp2–H and Csp3–H bond activation. Nickel-catalyzed C-H bond 
functionalized reactions which lead to the formation of C–C bonds have been recognized as one of 
important strategies in synthetic organic chemistry. Some important breakthroughs in the study of 
nickel-catalyzed direct C-H activations demonstrated that Nickel-catalyzed reactions are broadly 
applicable to a variety of research fields related to organic synthesis. Important developments have 
come true to extend the substrate scope, particularly, including simple arenes, electron-deficient 
aromatic and heteroaromatic substrates. 

From a synthetic point of view, nickel-catalyzed direct C–H bond functionalizations provide 
novel and efficient tools for constructing various useful compounds. Gathering mechanistic insights 
could help us to understand the nature of these reactions and lead to the discovery of unique 
reactivities of metal catalysts. However, there are still some major challenges that need to be 
addressed in this rapidly developing area. Most mechanisms proposed in this study are preliminary 
methods lacking solid and thorough experimental and theoretical studies. Moreover, only a few 
reactions with chiral ligands could realize asymmetric catalysis. Enantioselective C−H 
functionalization and C(sp3)−H functionalization may represent significant challenges for further 
catalyst/reaction developments, etc. To overcome these central challenges, an increasing demand 
for the robust catalytic systems will continue to drive the field forward towards the development of 
ideal C–H bond activation. With increased exploitation of nickel catalysts, new exciting and 
innovative achievements are expected to appear in the near future. 
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