Preparation of \mathbf{N}-substituted sulfoximines by benzotriazole methodology

Alan R. Katritzky,* Yuming Zhang, Sandeep K. Singh, and Yves P. Le Gall
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200
E-mail: Katritzky@chem.ufl.edu
(received 13 Nov 03; accepted 09 Jan 04; published on the web 15 Jan 04)

Abstract

Diverse N-substituted sulfoximines $\mathbf{5 a - n}$ were prepared by nucleophilic replacement of the benzotriazole moiety in N-(benzotriazol-1-ylalkyl)sulfoximines 3a-e using organozinc reagents or allylsilanes. N-(Benzotriazol-1-ylalkyl)sulfoximines 3, in turn, were obtained by condensation of sulfoximines $\mathbf{1}$ with aldehydes $\mathbf{2}$ and benzotriazole.

Keywords: N-Substituted sulfoximines, condensation, nucleophilic substitution, organozinc reagents, allylsilanes

Introduction

N-Functionalized sulfoximine derivatives are antimuscarinic, spasmolytic, ${ }^{1}$ antiarrhythmic, ${ }^{2}$ γ-glutamylcysteine synthetase inhibitors, ${ }^{3}$ possess antitumor activity, ${ }^{4}$ and are important synthetic intermediates. ${ }^{5}$ Several methods have been developed for the preparation of N-substituted sulfoximines from NH -sulfoximines: (i) Eschweiler-Clark conditions for N -methylated sulfoximines; ${ }^{6}$ (ii) palladium-catalyzed reactions for N-arylated sulfoximines; ${ }^{7}$ and (iii) base-catalyzed Michael-type additions ${ }^{8}$ or base-promoted alkylations ${ }^{9 a}$ or acylations ${ }^{9 b}$ (Scheme 1).

Nucleophilic substitution of the benzotriazole moiety in benzotriazolylmethyl amines is an efficient method to prepare N-alkylated amines, ${ }^{10}$ amides, ${ }^{11}$ thioamides, ${ }^{12}$ or sulfonamides. ${ }^{13}$ Herein, we report the preparation of N-(benzotriazol-1-ylalkyl)sulfoximines $\mathbf{3}$ as intermediates and subsequent nucleophilic replacement of the benzotriazolyl anion to introduce a simple route to N -substituted sulfoximines 5 .

Results and Discussion

Preparation of \boldsymbol{N}-(benzotriazol-1-ylmethyl)sulfoximines 3a-e

A variety of benzotriazolyl intermediates, which provide convenient routes to diverse heterocycles, ${ }^{14 \mathrm{a}}$ are readily available by condensations of benzotriazole and aldehydes with amides, thio

Scheme 1

amides, sulfonamides or acylhydrazines. ${ }^{14 \mathrm{~b}}$ We have now similarly prepared N-functionalized sulfoximines via N -(benzotriazol-1-ylmethyl)sulfoximines 3a-e (Scheme 2, Table 1). Thus, condensation of (\pm)-S-methyl-S-phenylsulfoximine (1a) with formaldehyde and benzotriazole in the presence of catalytic amounts of p-toluenesulfonic acid in refluxing toluene gave N-(benzotriazol-1-ylmethyl)-S-methyl-S-phenylsulfoximine (3a) in 73\% yield. Similarly, reaction of 1a with benzotriazole and ethyl glyoxylate gave the desired ethyl 2-(1H-1,2,3-benzotriazol-1-yl)-2-[[methyl(oxo)phenyl- λ^{6}-sulfanylidene]amino]acetate (3b) in 82% yield. Condensation of diphenyl sulfoximine with formaldehyde or ethyl glyoxylate and benzotriazole gave the corresponding benzotriazole adducts 3c and 3d in 78% and 71% yield, respectively. Use of $(1 R)-(-)$-menthyl glyoxylate in this condensation reaction provided the adduct $3 \mathbf{e}$ in 62% yield as a mixture of diastereomers in 1:1 ratio, as determined by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the crude product. Condensation of $(S)-(-)$-S-methyl-S-phenylsulfoximine (S)-1a with formaldehyde and benzotriazole afforded the enantiopure benzotriazole intermediate (S)-3a in 69% yield. Structures of intermediates 3a-e are supported by their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and by elemental analysis or high-resolution MS data.

Nucleophilic substitution of 3a-c with organozinc reagents

Lewis acid $\left(\mathrm{ZnCl}_{2}\right)$ facilitates the loss of the benzotriazolyl anion in N-(benzotriazol-1-ylalkyl)sulfoximines $\mathbf{3}$ to form N-methylene-(λ^{6}-sulfanylidene)iminium ions 4-I $\leftrightarrow 1$-(methyleneamino)-λ^{4}-sulfonium ions $4-I I$, which can undergo nucleophilic addition by organozinc reagents. Nucleophilic substitution of the benzotriazolyl group in 3a-c by allyl or aryl groups was achieved by treatment of $\mathbf{3 a - c}$ with allyl- or arylzinc reagents prepared in situ by reaction of zinc chloride with the corresponding Grignard reagents. The desired N-functionalized sulfoximines

5a-h were obtained in 41-65\% yields (Scheme 2, Table 2). Reaction of $\mathbf{3 b}$ with benzylzinc chloride gave $5 \mathbf{e}$ as a mixture of diastereoisomers in a $2: 3$ ratio. Attempts to improve the diastereoselectivity by lowering the reaction temperature or increasing the reaction time remained unsuccessful.

Scheme 2

Table 1. Preparation of N -(benzotriazol-1-ylalkyl)sulfoximines 3a-e

Sulfoximine	Aldehyde	R^{1}	R^{2}	Product	Yield [\%]
1a	2a	Me	H	3a	73
1a	2b	Me	$\mathrm{CO}_{2} \mathrm{Et}$	3b	82
1b	2a	Ph	H	3c	78
1b	2b	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	3d	71
1b	2c	Ph	\checkmark	3 e	62
(S)-1a	2a	Me	H	(S)-3a	69

Nucleophilic substitution of 3a-e with allylsilanes

Lewis acid promoted reactions of allylsilanes with benzotriazole intermediates result in nucleophilic substitution. ${ }^{15}$ Reaction of $\mathbf{3 b}$ with allyltrimethylsilane in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ gave N-substituted sulfoximine $5 \mathbf{i}$ in 64% yield (Table 2). Similarly, (benzotriazol-1-ylmethyl)diphenylsulfoximine 3c reacted with allyltrimethylsilane or (2-methylpropenyl)trimethylsilane to give $\mathbf{5 j}$ and $\mathbf{5 k}$ in 74% and 92% yields, respectively. Bulky intermediates $\mathbf{3 d} \mathbf{e}$ e, which showed no reactivity towards organozinc reagents, reacted readily with
allyltrimethylsilane to afford N-substituted sulfoximines $5 \mathbf{l}$ and $\mathbf{5 m}$ in 71% and 60% yields, respectively. However, the sulfur chiral center did not exert any diastereoselectivity, and sulfoximine $5 \mathbf{i}$ was obtained as a $1: 1$ mixture of diastereoisomers as determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Use of $(R)-(-)$-menthyl group as an additional chiral moiety in $3 \mathbf{e}$ also resulted in the formation of a $1: 1$ mixture of diastereomers 5 m in 60% yield upon reaction with allyl(trimethyl)silane. Similarly, reactions of (S)-3a with allyl(trimethyl)silane or 2-methyl-3-(trimethyl)silyl-1-propene gave sulfoximines (S)-5a or (S)-5n in 77 and 67% yields, respectively.

Table 2. Preparation of N-substituted sulfoximines $\mathbf{5 a - n}$

Staring material	Nucleophile	R^{1}	R^{2}	R^{3}	Product	Yield [\%]
3a	$\sim \mathrm{ZnCl}$	Me	H	N	5a	45
3a	PhZnCl	Me	H	Ph	5b	45
3 a	$4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{ZnCl}$	Me	H	4-ClC ${ }_{6} \mathrm{H}_{4}$	5 c	62
3a	$\mathrm{PhCH}_{2} \mathrm{ZnCl}$	Me	H	PhCH_{2}	$5 d$	65
3b	$\mathrm{PhCH}_{2} \mathrm{ZnCl}$	Me	$\mathrm{CO}_{2} \mathrm{Et}$	PhCH_{2}	5 e	41
3c	$4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{ZnCl}$	Ph	H	4-ClC ${ }_{6} \mathrm{H}_{4}$	5 f	62
3c	$\mathrm{PhCH}_{2} \mathrm{ZnCl}$	Ph	H	Ph	5 g	49
3 c	(2-mesityl) ZnCl	Ph	H	2-mesityl	5h	53
3b	$\sim \mathrm{SiMe}_{3}$	Me	$\mathrm{CO}_{2} \mathrm{Et}$	N	5 i	64
3c	$\sim \mathrm{SiMe}_{3}$	Ph	H	V	5j	74
3c	$\xrightarrow{\sim} \mathrm{SiMe}_{3}$	Ph	H	d	5k	92
3d	SiMe_{3}	Ph	$\mathrm{CO}_{2} \mathrm{Et}$	0	51	71
3 e	$\sim \mathrm{SiMe}_{3}$	Ph	λ	N	5 m	60
(S)-3a	$\sim \mathrm{SiMe}_{3}$	Me	H	N	(S)-5a	77
(S)-3a	$\xrightarrow{\sim} \mathrm{SiMe}_{3}$	Me	H	d	(S)-5n	67

Conclusions

In summary, we have introduced a general and convenient method for the preparation of N substituted sulfoximines via readily available N-(benzotriazol-1-ylmethyl)sulfoximines.

Experimental Section

General Procedures. ${ }^{1} \mathrm{H}$ NMR spectra were determined at 300 MHz and ${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3} (with TMS for ${ }^{1} \mathrm{H}$ and CDCl_{3} for ${ }^{13} \mathrm{C}$ as the internal reference). HRMS was measured on an AEI-30 mass spectrometer. Tetrahydrofuran (THF) was distilled from Na /benzophenone, dichloromethane was distilled from CaH_{2} under N_{2}. Sulfoximines 1a, 1b and (S)-1a were prepared according to literature procedures. ${ }^{16}$

General procedure for the preparation of \boldsymbol{N}-(benzotriazol-1-ylalkyl)sulfoximines 3a-e

A mixture of aldehyde $2(10 \mathrm{mmol})$, benzotriazole $(1.19 \mathrm{~g}, 10 \mathrm{mmol})$, sulfoximine $\mathbf{1}(10 \mathrm{mmol})$ and catalytic $p-\mathrm{TsOH}(30 \mathrm{mg})$ in toluene was refluxed overnight under N_{2} in a Dean-Stark apparatus. After removal of water, toluene was evaporated under reduced pressure, and the residue was purified by column chromatography with hexanes/ethyl acetate (from $1: 1$ to $1: 3$) to give the desired product 3.
1-[[[Methyl(oxo)phenyl- λ^{6}-sulfanylidene]amino]methyl]-1H-1,2,3-benzotriazole (3a). Colorless plates (from hexanes/chloroform); mp $88-89^{\circ} \mathrm{C}$; yield 73%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.93$ (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.95(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09 (s, 3H); ${ }^{13} \mathrm{C}$ NMR: $\delta 146.0,139.0,133.3,132.5,129.3,127.7,127.1,123.7,119.6,110.3$, 57.0, 45.4. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}$: C, 58.72 ; H, 4.93; N, 19.57. Found: C, 58.86; H, 4.79; N, 19.95.
Ethyl 2-(1H-1,2,3-benzotriazol-1-yl)-2-[[methyl(oxo)phenyl- λ^{6}-sulfanylidene]amino]acetate (3b). A 1:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product. After recrystallization, one isomer was separated and characterized. Colorless plates (from hexanes/chloroform); mp 114-115 ${ }^{\circ} \mathrm{C}$; yield $82 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR: $\delta 8.07-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.62(\mathrm{~m}$, $3 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}$, $3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 167.5,146.5,137.6,133.9,132.1,129.7,128.6,127.2$, 123.9, 119.7, 112.5, 70.3, 62.3, 45.1, 13.8. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 56.97$; H, 5.06; N, 15.63. Found: C, 57.31 ; H, 4.95; N, 15.92.

1-[[[Oxo(diphenyl)- λ^{6}-sulfanylidene]amino]methyl]-1H-1,2,3-benzotriazole (3c). White prisms (from hexanes/chloroform); mp $123-124{ }^{\circ} \mathrm{C}$; yield 78%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 146.1, 140.0, 132.9, 132.6, 129.2, 128.0, 127.1, 123.7, 119.6, 110.6, 57.3. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 65.50 ; \mathrm{H}, 4.63$; N, 16.08. Found: C, 65.80; H, 4.48; N, 16.17.
Ethyl 2-(1H-1,2,3-benzotriazol-1-yl)-2-[[oxo(diphenyl)- λ^{6}-sulfanylidene]amino]acetate (3d). White prisms (from hexanes/ethyl acetate); mp 86-87 ${ }^{\circ} \mathrm{C}$; yield 71%. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.05-7.96$ (m, $4 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.25(\mathrm{~m}, 8 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 167.7,146.4,139.0,133.3,133.0,132.1,129.4,129.1,128.4,128.0$, 127.2, 123.9, 119.6, 112.6, 70.0, 62.4, 13.9. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 62.84 ; \mathrm{H}, 4.79$; N, 13.32. Found: C, 62.96; H, 4.77; N, 13.27.
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-(1H-1,2,3-benzotriazol-1-yl)-2-[[diphenyl(oxo)-λ^{6}-sulfanylidene]aminolacetate (3e). Isolated as a $1: 1$ mixture of diastereomers; colorless oil; yield 62%. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.03-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.25(\mathrm{~m}, 8 \mathrm{H}), 6.77(\mathrm{~s}, 0.5 \times 1$ H), $6.76(\mathrm{~s}, 0.5 \times 1 \mathrm{H}$, isomer), $4.76(\mathrm{dt}, J=10.9,4.4 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 4.67(\mathrm{dt}, J=10.9,4.4 \mathrm{~Hz}$, $0.5 \times 1 \mathrm{H}), 2.07-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.65-0.73(\mathrm{~m}, 13 \mathrm{H}), 0.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H}), 0.42(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 0.5 \times 3 \mathrm{H}$, isomer); ${ }^{13} \mathrm{C}$ NMR: $\delta 167.3$ (167.2), 146.3 (146.3), 139.2 (139.1), 138.9, 133.2, 133.0 (132.9), 132.1 (132.0), 129.3, 129.0 (128.9), 128.5 (128.4), 128.0 (127.9), 127.1 (127.0), 123.8 (123.7), 119.5, 112.7 (112.5), 70.2 (70.1), 46.8 (46.6), 40.2 (40.1), 33.9, 31.2 (31.2), 25.9 (25.4), 23.1 (22.8), 21.8, (21.8), 20.6 (20.4), 16.1 (15.6). HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$: 531.2429, found: 531.2425.
(S)-1-[[[Methyl(oxo)phenyl- λ^{6}-sulanylidene]amino]methyl]-1H-1,2,3-benzotriazole (S)-(3a). $[\alpha]_{\mathrm{D}}^{25}=+32.6\left(c \quad 1.32, \mathrm{CHCl}_{3}\right)$; other data same as $\mathbf{3 a}$.

General procedure for the nucleophilic substitution of 3a-c with organozinc reagents

A solution of zinc chloride ($1.0 \mathrm{M}, 1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}$) in THF was added to a flask containing a solution of the Grignard reagent $(1.0 \mathrm{M}, 1.2 \mathrm{~mL}, 1.2 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ under nitrogen at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 45 min and then cooled to $0^{\circ} \mathrm{C}$ again, and N-(benzotriazol-1-ylalkyl)sulfoximine 3 (1 mmol) in THF (10 mL) was added dropwise. The reaction mixture was stirred overnight at $25^{\circ} \mathrm{C}$, quenched with dil. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The organic layer was washed with NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then removed. The residue was purified by column chromatography on silica gel using hexanes/ethyl acetate (1:2) as eluent to afford the desired N - substituted sulfoximines $\mathbf{5 a - h}$.
(3-Butenylimino)(methyl)oxo(phenyl)- λ^{6}-sulfane (5a). Colorless oil; yield 45%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.93-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 3 \mathrm{H}), 5.90-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.00(\mathrm{~m}$, $4 \mathrm{H}), 2.90-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 139.5,136.6,132.8,129.4,128.6$, 115.7, 45.1, 43.5, 37.1. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15}$ NOS: C, 63.12; H, 7.22; N, 6.69. Found: C, 62.64; H, 7.51; N, 6.89.
(Benzylimino)(methyl)oxo(phenyl) $-\lambda^{6}$-sulfane (5b). ${ }^{17}$ Colorless oil; yield 45%. ${ }^{1} \mathrm{H}$ NMR: δ $7.95-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.21(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 141.2,139.4,132.9,129.4,128.6,128.2,127.6,126.5$, 47.3, 45.3. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15}$ NOS: C, 68.54; H, 6.16; N, 5.71. Found: C, 68.07; H, 6.32; N, 5.92 .
[(4-Chlorobenzyl)imino](methyl)oxo(phenyl)- λ^{6}-sulfane (5c). ${ }^{9 \mathrm{~b}}$ White prisms (from hexanes /ethyl acetate); $\mathrm{mp} 61-62{ }^{\circ} \mathrm{C}$; yield 62%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.93-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.31-7.23(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 139.7, 139.3, 133.0, 132.2, 129.5, 128.9, 128.6, 128.3, 46.7, 45.3. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14}$ ClNOS: C, 60.10; H, 5.04; N, 5.01. Found: C, 60.06; H, 5.12; N, 4.97.
Methyl(oxo)(phenethylimino)(phenyl)- λ^{6}-sulfane (5d). Colorless oil; yield 65%. ${ }^{1} \mathrm{H}$ NMR: δ 7.79-7.76 (m, 2H), 7.61-7.48 (m, 3H), 7.27-7.16 (m, 5H), 3.28-3.19 (m, 1H), 3.06-2.96 (m,

4H), 2.90-2.85 (m, 2H). ${ }^{13} \mathrm{C}$ NMR: $\delta 140.4,139.4,132.8,129.3,128.9,128.6,128.2,125.9$, 45.8, 45.1, 39.4. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NOS:} \mathrm{260.1109}, \mathrm{found:} 260.1107$.

Ethyl 2-[[methyl(oxo)phenyl- λ^{6}-sulfanylidene]amino]-3-phenylpropanoate (5e). Isolated as a mixture of diastereomers in 2:3 ratio; colorless oil; yield 41%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.91-7.89(\mathrm{~m}, 1 \mathrm{H})$, $7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 7 \mathrm{H}), 4.20-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.20-2.90(\mathrm{~m}, 5 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $0.4 \times 3 \mathrm{H}$, diastereomer 1), $1.02\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.6 \times 3 \mathrm{H}\right.$, diastereomer 2). ${ }^{13} \mathrm{C}$ NMR: $\delta 173.6$ (172.8), 138.3 (137.8), 133.0 (132.7), 129.9, 129.6, 129.2, 129.1, 128.5, 128.4, 128.1, 126.1, 60.8 (60.4), 59.4 (58.3), 45.2 (45.1), 42.3 (41.4), 14.0 (13.9). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 65.23$; H, 6.39; N, 4.23. Found: C, 65.41; H, 6.52; N, 4.49.
[(4-Chlorobenzyl)imino](oxo)diphenyl- λ^{6}-sulfane (5f). Colorless oil; yield 62%. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.01-7.98(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.24$ $(\mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 140.5,140.1,132.5,132.1,129.2,128.8,128.5,128.3,46.5$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNOS}: \mathrm{C}, 66.76$; H, 4.72. Found: C, 66.39; H, 4.96.
(Benzylimino)(oxo)diphenyl- λ^{6}-sulfane (5g). ${ }^{18}$ Colorless oil; yield 49\%. ${ }^{1}$ H NMR: $\delta 8.03-8.00$ $(\mathrm{m}, 4 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 8 \mathrm{H}), 7.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 141.5,140.7,132.4,129.1,128.6,128.2,127.4,126.4,47.1$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NOS}: \mathrm{C}$, 74.23; H, 5.57; N, 4.56. Found: C, 74.13; H, 5.59; N, 4.62.
[(Mesitylmethyl)imino](oxo)diphenyl- $\boldsymbol{\lambda}^{6}$-sulfane (5h). White microcrystals (from ethyl acetate/hexanes); mp $97{ }^{\circ} \mathrm{C}$; yield 53\%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.96-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 6 \mathrm{H}), 6.78$ (s, 2H), $4.20(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 141.3,136.9,136.1,134.5,132.1$, 128.9, 128.8, 128.3, 40.7, 20.8, 19.6. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NOS}: \mathrm{C}, 75.61 ; \mathrm{H}, 6.63$; N, 4.01. Found: C, 75.29; H, 6.75; N, 4.01.

General procedure for the nucleophilic substitution of 3a-e with allyl(trimethyl)silanes

To a mixture of N -(benzotriazol-1-ylalkyl)sulfoximine $\mathbf{3}(1 \mathrm{mmol})$ and allyl(trimethyl)silane (1 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and then at room temperature for 18 h . The reaction was quenched by aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined solvent extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removed in vacuo. The residue was purified by column chromatography with hexanes/ethyl acetate (2:1) as eluent to give the desired N-substituted sulfoximine 5.
Ethyl 2-[[methyl(0xo)phenyl- λ^{6}-sulfanylidene]amino]-4-pentenoate (5i). Isolated as a $1: 1$ mixture of diastereomers; colorless oil; yield 64%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.52(\mathrm{~m}$, $3 \mathrm{H}), 5.93-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0.5 \times 2 \mathrm{H}$, diastereomer 1), 4.12$3.91(\mathrm{~m}, 0.5 \times 2 \mathrm{H}$, diastereomer 2), $3.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}$, diastereomer 1), $3.69(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 0.5 \times 1 \mathrm{H}$, diastereomer 2), $3.15(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H}$, diastereomer 1), $1.15\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H}\right.$, diastereomer 2). ${ }^{13} \mathrm{C}$ NMR: $\delta 173.2,172.7$ (other diastereomer), 139.7, 139.4 (other diastereomer), 134.1, 134.0 (other diastereomer), 132.9, $129.2,128.5,128.3$ (other diastereomer), 117.4, 117.3 (other diastereomer), 60.5, 60.3 (other diastereomer), 56.9, 56.4 (other diastereomer), 45.4, 45.0 (other diastereomer), 40.4, 39.5 (other
diastereomer), 14.04, 13.98 (other diastereomer). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 59.76 ; \mathrm{H}$, 6.81; N, 4.98. Found: C, 60.17; H, 7.18; N, 4.92.
(3-Butenylimino)(oxo)diphenyl- λ^{6}-sulfane (5j). Colorless oil; yield 74\%. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.00-$ $7.96(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 6 \mathrm{H}), 5.97-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.13-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 2H), 2.46-2.39 (m, 2H). ${ }^{13} \mathrm{C}$ NMR: $\delta 140.7,136.8,132.2,129.0,128.5,115.7,43.5,37.3$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NOS}: \mathrm{C}, 70.81$; H, 6.31; N, 5.16. Found: C, $71.16 ; \mathrm{H}, 6.47$; N, 5.36.
[(3-Methyl-3-butenyl)imino](oxo)diphenyl- λ^{6}-sulfane (5k). Colorless oil; yield 92%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.99-7.96(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 6 \mathrm{H}), 4.75-4.74(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 144.2,140.8,132.2,129.0,128.5,110.9,42.5$, 41.2, 22.7. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19}$ NOS: C, 71.54; H, 6.71; N, 4.91. Found: C, 71.37; H, 6.78; N, 4.80 .

Ethyl 2-[[oxo(diphenyl)- λ^{6}-sulfanylidene]amino]-4-pentenoate (5l). Colorless oil; yield 71\%. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.04-7.96(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 6 \mathrm{H}), 5.98-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.19-$ $4.06(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 173.0, 140.3, 134.3, 132.4, 132.4, 128.9, 128.9, 128.6, 128.3, 117.3, 60.5, 56.9, 40.1, 14.1. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 66.45 ; \mathrm{H}, 6.16$; $\mathrm{N}, 4.08$. Found: C, 66.56; H, 6.28; N, 4.28.
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-[[oxo(diphenyl)- λ^{6}-sulfanylidene]amino]-4pentenoate (5m). Isolated as a $1: 1$ mixture of diasteromers; colorless oil; yield 60%. ${ }^{1} \mathrm{H}$ NMR: δ 8.08-8.04 (m, 2H), 7.96-7.92 (m, 2H), 7.54-7.42 (m, 6H), 6.01-5.83 (m, 1H), 5.15-5.06 (m, $2 \mathrm{H}), 4.78-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.69-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.78-0.72(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 172.7$ (172.6), 140.6, 140.4 (140.3), 134.5 (134.4), 132.5 (132.4), 129.1 (129.0), 129.0, 128.9 (128.8), 128.5 (128.4), 117.4 (117.3), 74.4, 57.5 (57.3), 46.9 (46.8), 40.7 (40.5), 40.4 (40.3), 34.1, 31.3, 25.8 (25.7), 23.2 (22.9), 22.0, 20.8 (20.7), 16.1 (15.8). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 71.49$; H , 7.78; N, 3.09. Found: C, 71.33; H, 7.99; N, 3.24.
(S)-(3-Butenylimino)(methyl)oxo(phenyl)- λ^{6}-sulfane [(S)-5a]. $[\alpha]_{\mathrm{D}}^{25}=+136.9$ (c 2.08, $\left.\mathrm{CHCl}_{3}\right)$. Other data same as $\mathbf{6 a}$.
(S)-Methyl[(3-methyl-3-butenyl)imino]oxo(phenyl)- $\boldsymbol{\lambda}^{6}$-sulfane [(S)-5n]. Colorless oil; yield $67 \% .[\alpha]_{\mathrm{D}}^{25}=+130.6\left(c 1.75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 4.72$ $(\mathrm{s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 4 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 144.0,139.6,132.8,129.4,128.6,110.8,45.2,42.5,40.9,22.7$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NOS}: \mathrm{C}, 64.53 ; \mathrm{H}, 7.67$; N, 6.27. Found: C, $64.16 ; \mathrm{H}, 7.97$; N, 6.23.

References

1. Alker, D.; Kemp, J. E. G.; Cross, P. E. PCT Int. Appl. 9110648, 1991; Chem. Abstr. 1991, 115, 207864.
2. Hellberg, M. R.; Shanklin, J. R., Jr. U.S. Pat. 5140026, 1992; Chem. Abstr. 1993, 118, 147299.
3. Griffith, O. W.; Anderson, M. E.; Meister, A. J. Biol. Chem. 1979, 254, 1205.
4. Harvison, P. J.; Kalman, T. I. J. Med. Chem. 1992, 35, 1227.
5. (a) Johnson, C. R. Acc. Chem. Res. 1973, 6, 341. (b) Reggelin, M.; Zur, C. Synthesis 2000, 1. (c) Craig, D.; Geach, N. J.; Sardharwala, F. E.; White, A. J. P.; Williams, D. J. Arkivoc 2002, (vi), 104.
6. Johnson, C. R.; Schroeck, C. W.; Shanklin, J. R. J. Am. Chem. Soc. 1973, 95, 7424.
7. (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731. (b) Bolm, C.; Simic, O. J. Am. Chem. Soc. 2001, 123, 3830. (c) Bolm, C.; Martin, M.; Gibson, L. Synlett 2002, 832.
8. Johnson, C. R.; Rigau, J. J.; Haake, M.; McCants Jr. D.; Keiser, J. E.; Gertsema, A. Tetrahedron Lett. 1968, 3719.
9. (a) Johnson, C. R.; Lavergne, O. M. J. Org. Chem. 1993, 58, 1922. (b) Bolm, C.; Hackenberger, C. P. R.; Simic, O.; Verrucci, M.; Muller, D.; Bienewald, F. Synthesis 2002, 879.
10. (a) Katritzky, A. R.; Yannakopoulou, K.; Lue, P.; Rasala, D.; Urogdi, L. J. Chem. Soc., Perkin Trans. 1 1989, 225. (b) Katritzky, A. R.; Fan, W.-Q. J. Fluorine Chem. 1991, 51, 33.
11. (a) Katritzky, A. R.; Drewniak, M.; Lue, P. J. Org. Chem. 1988, 53, 5854. (b) Katritzky, A. R.; Urogdi, L. J. Chem. Soc., Perkin Trans. 1 1990, 1853.
12. Katritzky, A. R.; Denisko, O.; Lang, H. Tetrahedron 1995, 51, 8703.
13. Katritzky, A. R.; Oniciu, D. C.; Ghiviriga, I. Synth. Commun. 1997, $27,907$.
14. (a) Katritzky, A. R. J. Heterocycl. Chem. 1999, 36, 1501. (b) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem. Rev. 1998, 98, 409.
15. Katritzky, A. R.; Qiu, G.; He, H.-Y.; Yang, B. J. Org. Chem. 2000, 65, 3683.
16. Misani, F.; Fair, T. W.; Reiner, L. J. Am. Chem. Soc. 1951, 73, 459.
17. Johnson, C. R.; Lavergne, O. M. J. Org. Chem. 1993, 58, 1922.
18. Hoffmann, H.; Gescher, A. J. Electroanal. Chem. 1976, 74, 329.
